Using MFPIC with METAPOST

The MFPIC system now includes support for METAPOST. This necessitated rewriting so
many of the GRAFBASE macros that a separate file, grafbase.mp, implements the META-
POST code while grafbase .mf still contains the METAFONT code. This document addresses
the issues that arose with the added METAPOST support.

There were a great many changes to mfpic.tex, but I believe we have retained back-
ward compatibility (with versions after 0.2.10.9) in the following senses:

— Previous files that input mfpic.tex can be processed with the new package. While
they produce slightly different METAFONT code, the pictures should be the same except
that some broken code has been fixed.

— Previous .mf files produced by TgXing the above files should still be correct and
produce the same pictures as before when processed with METAFONT.

— Previously produced .mf files and new .mf files produced without turning on META-
POST support, can nevertheless be processed with METAPOST without error. This
will not permit any of the POSTSCRIPT specific enhancements, and may not produce
exactly the same picture due to essential differences between METAFONT’s and META-
POST’s output format.

However, no backward compatibility is guaranteed for \mfsrc commands that write
raw METAFONT or GRAFBASE code. Moreover there has been a change in the code, be-
ginning around version 0.3.8, so that changes to most (all?) MFPIC parameters are local
if they are changed inside an mfpic environment. Thus, files that rely on a change like
\axisheadlen{6pt}, made in one picture, persisting to the next picture, will be broken.
We think the new behavior is better, and more in line with user expectations.

There is no change to the usage and the new MFPIC macros write (nearly) the same
METAFONT file as before. However the command \usemetapost will cause a .mp file to
be written that will be significantly different than the .mf otherwise produced. Running
METAPOST on this file will create EPS graphics files instead of a font file. The new MFPIC
now includes support for including these graphics. Naturally, it is required that you have
a system that allows printing of EPS figures. A typical system might consist of epsf.tex
and/or the IATEX2: GRAPHICS package for graphics inclusion, plus the DvIPS driver, plus
either a POSTSCRIPT printer or GHOSTSCRIPT. In addition, pdfTEX and pdfIATEX can be
used. See below for more details about the requirements.

1. USING METAPOST.
The simplest way to turn on METAPOST support is to issue the command
\usemetapost

in your source file. This must come after inputting the MFPIC macros, but before the
\opengraphsfile command. In IWTEX2s one can use \usepackage [metapost]{mfpic}.
Changing between metafont and metapost options in a single document has not been tested
and is officially unsupported.

MFPIC Version: 0.6b beta.

To use MFPIC with METAPOST, the following support is needed (besides a working
METAPOST installation):

Under plainTEX The file epsf.tex

Under IATEX209 The file epsf.tex or epsf.sty

Under IATEX2¢ The package GRAPHICS or GRAPHICX

Under pdfIATEX The package GRAPHICS or GRAPHICX with option pdftex

Under plain pdfTEX The files supp-pdf . tex and supp-mis.tex

In all cases The files grafbase.mp and dvipsnam.mp plus, of course, mfpic.tex

(and mfpic.sty for BKTEX)

The file grafbase.mp should be in a directory searched by METAPOST. The remaining
files should be in directories searched by the appropriate TEX variant. At present only
versions of these files and packages current at the time of testing have been tested. If META-
POST cannot find the file grafbase.mp, then by default it will try to input grafbase.mf,
with generally fatal results.

In case pdfIATEX is used, the graphics package should be given the pdftex option. This
option requires the files pdftex.def, supp-pdf .tex and supp-mis.tex. The first of these
is supplied with the GRAPHICS package, and the other two are usually supplied with a
pdfTEX distribution.

If the user explicitly inputs one of the above required files or packages before the
MFPIC macros are loaded then MFPIC will not reload them. If they have not been input,
MFPIC will load whichever one it decides is required. In the INTEX2¢ case, MFPIC will load
the GRAPHICS package. If the user wishes GRAPHICX, then that package must be loaded
before MFPIC. As a convenience, any options to MFPIC other than the ones it recognizes
are passed on to the GRAPHICS package before loading it. Therefore, the following code

\usepackage [dvips,metapost] {mfpic}

will load the MFPIC macros, then load the GRAPHICS package with the dvips option. On
the other hand,

\usepackage [dvips] {graphicx} \usepackage [metapost]{mfpic}

is required to use the GRAPHICX package with the DVIPS driver option.
If METAPOST support is turned on, the user is expected to run METAPOST on the
resulting .mp file instead of METAFONT. A typical sequence of operations is as follows.

1. The user creates some file user.tex which contains one of the above methods of
invoking METAPOST support, the command \opengraphsfile{thefigs}, and then
some \mfpic commands or mfpic environments (followed later by \closegraphsfile,
of course).

2. The user runs the appropriate variant of TEX on user.tex. If all goes without error,
the file thefigs.mp is created.

3. The user runs METAPOST on the file thefigs.mp. METAPOST inputs grafbase.mp
containing METAPOST macros to aid in creating files thefigs.1 through thefigs.N
(where N is the number of figures) each containing a different EPS figure.

4. The user runs TEX again. It is at this stage that the figure inclusion is done by the
appropriate macros from epsf.tex or the GRAPHICS package, or the supp-pdf . tex.

5. The user runs the appropriate DVI-to-PS driver such as DVIPS, on user.dvi, and
then prints or views the resulting user.ps using, e.g., GHOSTSCRIPT. If pdfTEX or
pdfIATEX is used in step 4, a .pdf file is output instead of .dvi. In this case the user
prints or views it with a PDF viewer.

2. ADDITIONS.
Invoking METAPOST support adds certain extensions to MFPIC.
2.1 Color support
The code in grafbase.mp keeps track of six colors:
drawcolor, fillcolor, hatchcolor, headcolor, tlabelcolor and background.

These control the colors used for drawing lines and curves, for filling regions, for hatching
the interiors of regions, for drawing arrowheads, and for text that is placed by METAPOST
(requires the mplabels option). The easiest way to invoke some color other than black (the
default) is via the following MFPIC macros:

\drawcolor{{color)}
\fillcolor{{color)}
\hatchcolor{(color)}
\headcolor{{color)}
\tlabelcolor{{color)}
\backgroundcolor{(color)}

These commands write code into the .mp file that sets the value of the color for the
appropriate figure elements. The macro \gfill uses the fillcolor. When \ifpointfill
tests true then also \point draws points in fillcolor. The new macro \polkadot, draws
the polkadots in fillcolor. All the hatching commands \xhatch, \rhatch, etc., use
hatchcolor. All drawing of paths, curves, lines, etc., including dashed and dotted lines,
the shafts of arrows and the boundary of unfilled points use drawcolor. All arrowheads are
drawn in headcolor including those created by the \axes command. All text placed by
\tlabel (and similar macros) when mplabels is in force will be in tlabelcolor. \gclear
uses the color background (POSTSCRIPT doesn’t permit removal of ink, so filling with the
background color simulates clearing a region). Also the interior of unfilled points is colored
background. All colors are initialized to black except background is white.

The \shade command is rather obsolete, but for backward compatibility, it is accepted,
but translated to a filling with gray. The shade of gray is calculated from the values of
\shadespace and \shadewd, and the default values produce 0.75*white.

A (color) is one of the predefined color names black, white, red, green, blue, cyan,
magenta, or yellow or any legal METAPOST color expression. These expressions resolve to
a triplet of numbers separated by commas and enclosed in parentheses. The numbers will
be truncated to lie between 0 and 1. The predefine colors black, white, red, green, and
blue resolve respectively to (0,0,0) (1,1,1) (1,0,0) (0,1,0) (0,0,1). It is legal to
add colors and multiply them by numbers. Therefore, \fillcolor{blue+green} is legal
and is essentially the definition of cyan. The other predefined colors are magenta = red
+ blue and yellow = red + green. Also valid is \fillcolor{0.7*white}, which gives

a medium gray. In a pinch, numbers may be used directly, as in \fillcolor{(1,.5,0)},
which should give some sort of orange (depending on your display or printing device).
The color (1,0.5,0) is the same as 0.5*red + 0.5*yellow. You can darken any color by
multiplying it by a number less than 1.

As a convenience several grafbase macros allow specifying color using cmyk, RGB,
graylevels, or predefined color names. Thus, all of the following are valid MFPIC color
specifications: cmyk(1,0.50,0,0),rgb(0,.5,1),RGB(0,127.5,255),RoyalBlue (the last
is defined in dvipsnam.mp; all produce the same color). The color specification gray(.7)
is the same as 0.7*white. Use these, for example, as follows

\headcolor{RoyalBlue}
\fillcolor{cmyk(1,0.5,0.0)}

If these color setting commands are used outside any \mfpic environment, they are global,
and affect all following environments. If they are issued inside an environment, they affect
only subsequent figure elements inside that environment.

If METAPOST support has not been selected, then these commands issue an error
message, and MFPIC then proceeds as if nothing has happened.

For IATEX2¢ users, an alternative syntax is permitted similar to IATEX2¢’s color com-
mands. For example:

\fillcolor [{model)]{{color-spec)}

where (model) is one of rgb, RGB, cmyk, named, or gray, and {color-spec) is a specifi-
cation of the values appropriate to the model. For example:

\hatchcolor [cmyk]{0, .8, .6,.2}

This example is equivalent to \hatchcolor{cmyk(0,.8,.6,.2)}

If the named model is used, the name specified must be a previously defined color name,
either one of the predefined names, or a name defined in dvipsnam.mp, or one defined by
the following command:

\mfpdefinecolor{(name)}{{model)}{{color-spec)}

This will define a named color. Its use is best illustrated by an example, After
\mfpdefinecolor{DarkPuce}{rgb}{.8,.12, .56}

then one may use any of the following, with the same effect:

\drawcolor [named] {DarkPuce}
\drawcolor[rgb]{.8,.12, .56}
\drawcolor{rgb(.8,.12,.56)}
\drawcolor{DarkPuce}

2.2 Color options

For more control over color of individual elements, the macros \gfill and \draw have been
given optional arguments for specifying the color. In addition \point and the hatching
macros now have a second optional argument for specifying the color, and the \arrow
macro has another optional argument (now four altogether) for determining the color of
the head.

This optional color will be used for the single element only and has no effect on
fillcolor, drawcolor, hatchcolor, or headcolor. See mfpicdoc.tex for the syntax of
the color options.

Here is an example mixing these different methods of changing color:

\hatchcolor{green}
\draw [blue]\hatch\gfill [red]
\circle{(0,0),2}

This will draw a red filled, green hatched, blue circle. At the moment, the \dashed and
\dotted commands do not have new color options. Use something like the following:

\drawcolor{blue}
\dotted\gfill[red]\circle{(0,0),2}
\drawcolor{black}

to fill a circle with red, and outline it with a dotted blue boundary, returning to a default
black.

2.3 Cautions.

POSTSCRIPT is not a pixel oriented language and so neither is METAPOST. The model for
drawing objects is completely different between METAFONT and METAPOST, and so one
cannot always expect the same results. METAPOST support in MFPIC was carefully written
so that files successfully printed with MFPIC using METAFONT would be just as successfully
printed using METAPOST. Nevertheless, it will almost certainly choke on files that make
use of the \mfsrc command for writing code directly to the .mf file. While grafbase.mp
is closely based on grafbase.mf, much of the code had to be completely rewritten.

Pictures in METAPOST are stored as (possibly nested) sequences of objects, where
objects are things like points, paths, contours, other pictures, etc. In METAFONT, pictures
are stored as a grid of pixels. Thus, pictures that are relatively simple in one program might
be very complex in the other and even exceed memory allocated for their storage. A case in
point is the shade command in grafbase.mf. The METAFONT code simply added regularly
spaced dots (which each contained typically about 4 pixels at the resolution 300dpi) to the
interior of a contour. Essentially the same code in METAPOST creates a picture containing
an extremely large number of tiny circles, stored as filled cyclic contours with eight nodes
each. Even modest sized regions with modest values of \shadespace overflowed the META-
POST capacity in two of the distributions tested. In addition, the resulting shading tended
to be of very low quality when viewed or printed with the software we tested. Therefore,
the \shade macro under the METAPOST option merely fills with a gray color calculated to
be black if the shading space is not larger than the size of the dots. Keeping \shade at
all was done purely for backward compatibility since \gfill now has a color option for
METAPOST.

A model that helped me in developing the METAPOST macros for POSTSCRIPT support
is as follows. Think of each figure element as being painted on a transparent sheet. The
final picture is obtained by laying each sheet on top of the previous sheets in the order
they are drawn. In this model, the sheets are transparent, but the paint is opaque. This

leads to some problems. For example, paint cannot be removed*, it can only be covered up.
Therefore the code for unfilling a region is really just painting over in the color background.
This background color is still opaque, so if you create a picture of an annulus by filling a
circle and then unfilling a smaller circle, the center “hole” is not really a hole. Placing this
picture on top of another will obscure everything, nothing will show through the hole. In
METAFONT, the aforementioned annulus can be obtained by simply zeroing the pixels in
the smaller circle. Adding this on top of another picture will allow anything in the hole to
show through.

Therefore, the order in which picture elements are added is of great importance. In
mfpic environments, figures are drawn in the order they are written. But when prefix
macros add elements to a curve, these elements are drawn in reverse order.t For exam-
ple, \rect{(0,0), (1,1)} simply draws a square with line thickness equal to the default
pen width. And \gfill\rect{(0,0),(1,1)} draws only the filled interior of that square.
But \draw\gfill\rect{(0,0),(1,1)} fills the interior, and then draws the boundary.
Part of the filled interior is covered by the pen stroke (the filling is done right up to
the boundary, the pen is stroked with its center along the boundary). This usually gives
the best picture when the interior and boundary are different colors. On the other hand,
\gfill\draw\rect{(0,0),(1,1)} draws the boundary and then fills the interior. Part
of the boundary stroke (half its thickness) is covered by the filling painted over it. This
covering makes no difference when all the colors are the same (black), but now that colors
are introduced it can make a big difference in the final picture. Placing prefixes in the
following order (any prefix could be absent) should have most pictures looking best:

— Any arrow drawing prefixes first. Arrows are drawn with a simple \arrow or with

\arrow\reverse or \arrow\reverse\arrow

— Any prefix for dashing, dotting or drawing the curve next. These include \dashed,

\dotted, and \draw.

— Any hatching prefix or \polkadot next. If both are used, the one you want on top
should be first.

— Any filling prefix next (\shade or \gfill).

— Any transformation prefix (such as \rotatepath) or closing prefix (like \1lclose)
next, immediately before the curve. The order of these is not important.

— The curve (or a set of curves in a \connect group) last.

The placement of transformation macros (like \rotatepath) depends on what effect
you want to achieve. Something like

\draw\rotatepath{(0,0),45}\shade\rect{(0,0),(1,1)3}

will shade the original rectangle, but draw the outline of the rotated version. If you want
just one rectangle with various additions, put the transformation macro right before the
figure macro.

* The \gclip command would seem to contradict this, but what METAPOST actually
does with that command is to give the picture the attribute of being clipped. In the PosT-
SCRIPT output, a clipping path is defined, and the paint outside that path is never laid
down. Still, one can think of this as the exception from the point of view of MFPIC.

1 In programming terms, prefixes are right associative.

The definition of \shade as a gray fill means that old .tex files using MFPIC might
need to be edited. The position of \shade among the prefixes might need to be changed,
or a shaded figure might need to be drawn first so that other curves are not completely
covered up.

2.4 Text Manipulations

If text is placed by METAPOST using the mplabels option, then text may be rotated. One
might conceivably perform other transformtions, but that has not (yet) been implemented.

3. OTHER CONSIDERATIONS

It may be impossible to completely cater to all possible methods of graphic inclusions
with automatic tests. The macro that actually causes the POSTSCRIPT graphic to be
included is \setmfpicgraphic, and the user may (carefully!) redefine this to suit special
circumstances. The following are the default definitions.

In plain TeX: \def\setmfpicgraphic#1{\epsfbox{#1}}

In IATEX209: \def\setmfpicgraphic#1{\epsfbox{#1}}

In IWTEX2:: \def\setmfpicgraphic#1{\includegraphics{#1}}

In pdfIATEX: \def\setmfpicgraphic#1{\includegraphics{#1}}

In pdfTEX: \def\setmfpicgraphic#l{\convertMPtoPDF{#1}{1}{1}}

Moreover, since METAPOST by default writes files with numeric extensions, we add
code to each figure, so that these graphics are correctly recognized as EPS or MPS. For
example, to the figure with extension .1, we add the equivalent of one of the following

\DeclareGraphicsRule{.1}{eps}{.1}H{} in M TEX2¢.

\DeclareGraphicsRule{.1}{mps}{.1}{} in pdfIATEX.

Also, after running the command \setmfpicgraphic, MFPIC’s figure placement code
runs \getmfpicoffset to store the lower left corner of the bounding box of the figure in two
macros \mfpicllx and \mfpiclly. All the above definitions of \setmfpicgraphic, except
\includegraphics, make this information available, and the definition of merely copies it
into these two macros. What MFPIC does in the case of \includegraphics is to modify
(locally) the definition of an internal command of the graphics package so that it copies
the information to those macros, and then \getmfpicgraphic does nothing. Changes to
\setmfpicgraphic might require changing \getmfpicoffset

One possible reason for wanting to redefine \setmfpicgraphic might be to rescale all
pictures. This is definitely not a good idea without the option mplabels since the MFPIC
code for placing labels and captions and reserving space for the picture relies on the picture
having the dimensions given by the arguments to the \mfpic command. With mplabels
plus truebbox it will probably work, but (i) it has not been considered in writing the MFPIC
code, (ii) it will then scale all the text as well as the figure, and (iii) it will scale all line
thickness, which should be a design choice independent of the size of a picture. To rescale
all pictures, one need only change \mfpicunit and rerun TEX and METAPOST.

A better reason might be to allow the conversion of your METAPOST figures to some
other format. Then redefining \setmfpicgraphic could enable including the appropriate
file in the appropriate format.

The argument of the \setmfpicgraphic command is the filename resulting from run-
ning the macro \setfilename. The command \setfilename gets two arguments: the name
of the METAPOST output file (set in the \opengraphsfile command) without extension,
and the number of the picture. The default definition of \setfilename merely inserts a dot
between the two arguments. That is \setfilename{fig}{1} produces fig.1. You can re-
define this behavior also. Any changes to \setfilename must come after the MFPIC macros
are input and before the \opengraphsfile command. Any changes to \setmfpicgraphic
must come after the MFPIC macros are input and before any \mfpic commands, but it is
best to place it before the \opengraphsfile command.

As a hypothetical example, let us say you run TEX on your source file, producing
fig.mp, and then you run METAPOST, producing fig.1 through fig.10. Now you convert
them to some hypothetical format fig-1.pxy through fig-10.pxy. You could then do
something like the following;:

\def\setfilename#1#2{#1-#2.pxy}
\def\setmfpicgraphic#1{\includepxy{#1}} \def\getmfpicoffset#1{< code >}

and the figures will be automatically included (assuming that the hypothetical command
\includepxy can include the hypothetical graphics format pxy and that < code > saves
the lower left corner of the bounding box of .mp in the appropriate macros). However you
define \setfilename, it must produce the result without assignments or side effects. (In
technical terms it must be completely expandable.) Something that is very difficult without
assignments is to change the number, like trying to get \setfilename{file}{(n)} to
produce file.(n + 1). I don’t recommend trying this. Instead, use \mfcpicnumber{2}
before the \opengraphsfile command to start the figure numbering from 2.

Some figure inclusion macros (such as \epsfbox from epsf . tex) generate rather large
amounts of error messages for nonexistent figure files, so MFPIC tests for the existence of
the file before attempting an inclusion. Therefore, \setfilename{#1}{#2} should produce
the actual name of the necessary file when #1 is the name supplied in the \opengraphsfile
command and #2 is the number of the mfpic environment.

The code in MFPIC detects the TEX format in the following way: If \documentclass
is a defined command, INTEX2s or pdfIATEX is assumed. If not, but \documentstyle is
defined and \fmtname is not AmS-TeX, IATEX209 is assumed. If \pdfoutput is defined and
has a non-zero value, pdfIATEX or pdfTEX is assumed.

4. FILES

The current version of MFPIC, consists of five files exclusive of documentation and tests.
The files grafbase.mp and grafbase.mf contain the basic METAPOST and METAFONT
macros, the file dvipsnam.mp contains the METAPOST definitions of 68 color names. The
file mfpic.tex contains all the essential TEX macros. The file mfpic.sty simply issues
\input mfpic.tex.

The plain ASCII file readme.1st should be (should have been!) read first. The file
manifest.txt contains the full list of files with an indication of the purpose of each.

