Pictures in TEX with Metafont and MetaPost
by
Dr Thomas E. Leathrum
Geoffrey Tobin*
Daniel H. Luecking7L
2002/12/18

I. Introduction
1. WHY?

Tom got the idea for MEPICH mostly out of a feeling of frustration. Different output mech-
anisms for printing or viewing TEX DVI files each have their own ways to include pic-
tures. More often than not, there are provisions for including POSTSCRIPT data into a
DVI file using TEX \special’s. However, this technique seems far from TEX’s ideal of
device-independence, and besides, different TEX output drivers handle these \special’s
in different ways. The same problems arise with including TPIC \special’s.

IATEX’s picture environment has a hopelessly limited supply of available objects to
draw—if you want to draw a graph of a polynomial curve, you're out of luck.

There is, of course, PICTEX, which is wonderfully flexible and general, but its most
obvious feature is its speed—or rather lack of it. Processing a single picture in P[CTEX can
often take several seconds.

It occurred to Tom that it might be possible to take advantage of the fact that META-
FONT is designed for drawing things. The result of pursuing this idea is MFPIC, a set of
macros for TEX and METAFONT which incorporate METAFONT-drawn pictures into a TEX
file.

With the creation of METAPOST by John Hobby, and availability of free POSTSCRIPT
interpreters like GHOSTSCRIPT, some MFPIC users wanted to run their MFPIC output
through METAPOST, to produce POSTSCRIPT pictures. Moreover, users wanted to be able
to use pdfTEX, which does not get along well with PK fonts, but is quite happy with
METAPOST pictures. Unfortunately grafbase.mf, which contained the METAFONT macros
responsible for processing MFPIC’s output, was far too pixel-oriented for METAPOST. A new
file, grafbase.mp was created, based very heavily on grafbase.mf but compatible with
METAPOST. Now when an MFPIC output file says input grafbase, either METAFONT or
METAPOST may be run on it, and each program will select its own macros, and produce
(nearly) the same picture.

With the extra capabilities of POSTSCRIPT (e.g., color) and the corresponding abilities
of METAPOST, there was a demand for some MFPIC interface to access them. Consequently,
switches (options) have been added to access some of them. When these are used, output
files may no longer be compatible with METAFONT.

MFPIC Version: 0.6a beta.
* G.Tobin@latrobe.edu.au

t luecking@uark.edu

If you're wondering how to pronounce ‘MFPIC’: I always say ‘em-eff-pick’, spelling the
first two letters. This explains expressions like ‘an MFPIC file’. —DHL.

2. AUTHOR.

MFPIC was written primarily by Tom Leathrum during the late (northern hemisphere)
spring and summer of 1992, while at Dartmouth College. Different versions were being
written and tested for nearly two years after that, during which time Tom finished his
Ph.D. and took a job at Berry College, in Rome, GA. Between fall of 1992 and fall of 1993,
much of the development was carried out by others. Those who helped most in this process
are credited in the Acknowledgements.

The addition of METAPOST support was carried out by Dan Luecking around 1997-99.

3. MANIFEST.

Thirty-three files are included in this MFPIC distribution. See manifest.txt for a list
and a brief explanation of each. Only five are actually needed for full access to MFPIC’s
capabilities: mfpic.tex, mfpic.sty (the latter needed only for IATEX’s \usepackage),
grafbase.mf (needed only if METAFONT will be processing the figures), grafbase.mp and
dvipsnam.mp (needed only if METAPOST will be the processor).

II. Setting Up and Processing.

Setting up TEX and METAFONT to process these files will, to an extent, depend on your
local installation. The biggest problem you are likely to have, regardless of your installation,
will be convincing TEX and its output drivers to find METAFONT’s output files. You should
do whatever is necessary to insure that TEX looks in the current directory for .tfm files,
and that your dvi driver/viewer looks in the current directory for .pk files.

1. THE PROCESS

Here is an example of the process: for the sample file pictures.tex, first run TEX on it
(or run IATEX on lapictures.tex). You may see a message from MFPIC that there is no
file pics.tfm, but TEX will continue processing the file anyway. When TEX is finished,
you will now have a file called pics.mf. This is the METAFONT file containing the descrip-
tions of the pictures for pictures.tex. You need to run METAFONT on pics.mf, with
\mode:=1localfont set up. (Read your METAFONT manual to see how to do this.*) This
produces a pics.tfmfile and a GF file with a name something like pics.600gf. The actual
number may be different and the extension may get truncated on some file systems. Then
you run GFTOPK on the GF file to produce a PK font file. (Read your GFTOPK manual on
how to do this.) Now that you have the font and font metric files generated by METAFONT,
reprocess the file pictures.tex with TEX. The resulting DVI file should now be complete,
and you should be able to print and view it at your computer (assuming your viewer and
print driver have been set up to be able to find the PK font generated from pics.mf).

It is not advisable to rely on automatic font generation to create the .tfm and . pk files.
(Different systems do this in different ways, so here I will try to give a generic explanation.)

* If you are new to running METAFONT, the document Metafont for Beginners, by
Geoffrey Tobin, is a good start. Fetch CTAN/info/metafont-for-beginners.tex. “CTAN”
means the Comprehensive TEX Archive Network. You can find the mirror nearest you by
pointing your browser at http://www.ctan.org/.

The reason: later editing of a figure will require new files to be built, and most automatic
systems will not remake the files once they have been created. This is not so much a
problem with the .tfm, as MFPIC never tries to load the font if the .tfm is absent and
therefore no . tfm-making should ever be triggered. However, if you forget to run GFTOPK,
then try to view your resulting file, you may have to search your system and delete some
automatically generated .pk file (they can turn up in very strange places) before you can
see any later changes. I suggest you write a shell script (batch file) that (1) runs META-
FONT, (2) runs GFTOPK if step 1 returns no error, (3) deletes the .tfm if it exists, but the
.pk file does not. That way, if anything goes wrong, the .dvi will not contain the font
(MrpPIC will draw a rectangle and the figure number in place of the figure).

These processing steps—processing with TEX, processing with METAFONT/GFTOPK,
and reprocessing with TEX—may not always be necessary. In particular, if you change the
TEX document without making any changes at all to the pictures, then there will be no
need to repeat the METAFONT steps.

If you use MFPIC with the metapost option, then replace the METAFONT/GFTOPK steps
with the single step of running METAPOST. (Read your METAPOST documentation on how
to do this.*)

There are also somewhat subtle circumstance under which you can skip the second
TEX step—if you change the picture in such a way as not to affect the font metric file
(METAFONT case) or bounding box (METAPOST case), then you do not have to reprocess
with TEX, because the original metric used previously will put the pictures in the right
places. However, the post processing (DVIPS, for example) would still have to be repeated.
If pdfTEXis used, that would also have to be repeated, since it is effectively also a post-
processor. The exact cirumstances where metrics and bounding box are unchanged is rather
involved, so it is recommended that you always repeat the TEX step if changes are made
to a figure. However, there is one certain case: if you do not use the option mplabels, and
if only text labels are added to a picture, then only one pass through TEX is required, and
no additional runs of METAFONT or METAPOST.

2. How IT WORKS.

When you run TgX on the file pictures.tex, TEX generates a file pics.mf (or pics.mp).
This file is formed by \write commands in the mfpic macros. The user should never have
to read or change the file pics.mf directly—the MFPIC macros take care of it.

The enterprising user can determine by examining the MFPIC drawing macros, that
they translate almost directly into similar METAFONT/METAPOST commands, defined in
grafbase.mf/.mp. The \tlabel’s and \tcaption’s, however, are placed on the graph by
TEX, not METAFONT (except when options metapost and mplabels are both in effect, in
which case METAPOST arranges the labels).

* The document Some experiences on running Metafont and MetaPost, by Peter Wilson,
can be useful for beginners. Fetch CTAN/info/metafp.pdf.

III. Options.

There are now several options to the MFPIC package. These can be listed in the stan-
dard IATEX \usepackage optional argument, or can be turned on with certain provided
commands (the only possibility for plain TEX). Some options can be switched off and on
throughout the document. Here we merely list them and provide a general description of
their purpose. More details may be found later in the discussion of the features affected.
The headings below give the option name, the alternative macro and, if available, the
command for turning off the option.

1. metapost, \usemetapost

Selects METAPOST as the figure processor and makes specific features available. It changes
the extension used on the output file to .mp to signal that it can no longer be processed with
METAFONT. There is also a metafont option (command \usemetafont), but it is redundant,
as METAFONT is the default. Either command must come before the \opengraphsfile
command (see section FILES AND ENVIRONMENTS). They should not be used together in
the same document. (Actually, this hasn’t ever been tested, but it definitely wasn’t taken
into consideration in writing the macros.) If the command form \usemetapost is used in a
IATEX2¢ document, it must come in the preamble. Because of the timing of actions by the
GRAPHICS package’s pdftex.def and by BABEL,* when pdfIATEX is used MFPIC should be
loaded and \usemetapost (if used) declared before BABEL is loaded.

2. mplabels, \usemplabels, \nomplabels

Causes all \tlabel commands to write their contents to the output file. It has no effect on
\tcaption commands. In this case labels are handled by METAPOST, and can be rotated.
It requires METAPOST, and must come after METAPOST has been selected or it will produce
an error and be ignored (METAFONT cannot handle labels). Otherwise the commands can
come anywhere and affect subsequent \tlabel commands, but it is recommended that
you not mix the two methods of handling labels in a single mfpic environment, and that
you only use mplabels and truebbox (see below) together. When this is in effect, the labels
become part of the figure: they may be clipped if the clip option is in effect, and they
contribute to the bounding box if truebbox is in effect.

The user is responsible for adding the appropriate verbatimtex header to the output
file if necessary. For this purpose, there is the \mfpverbtex command, see the section
LABELS AND CAPTIONS. If the label text contains only valid plain TEX macros, there is
generally no need for a verbatimtex preamble at all. If you add a verbatimtex preamble
of WTEX code take care to make sure METAPOST calls WTEX (for example, by setting the
environmental variable TEX to latex in the command shell of your operating system.).

* At least as of this writing.

3. truebbox, \usetruebbox, \notruebbox

Normally METAPOST produces an output file with the exact bounding box of the figure.
By default, MFPIC overrides this and sets the bounding box to the dimensions specified by
the \mfpic command. This is be needed if TEX is to handle \tlabel commands correctly.
If no \tlabel commands are present, or if mplabels is used, then it is reasonable to let
METAPOST have its way. That is what this option does. The commands can come anywhere
outside any mfpic environment (because they change certain aspects of the opening code
of the command \mfpic), and affect all subsequent figures. This option has no effect with
METAFONT, but should cause no errors.

Again, it is recommended to use either both truebbox and mplabels or neither of them.
Actually, either one should work without the other but the code depends on internals of
the figure placement packages used, which could possibly change. Such a change could,
in fact, break the current code even if you follow this recommendation. If you should get
a message similar to “Undefined control sequence \Gin@l1lx”, a possible fix is to redefine
the command \getmfpicoffset (see section FOR POWER USERS ONLY) to be a no-op
(\def\getmfpicoffset{}).

4. clip, \clipmfpic, \noclipmfpic

Causes all parts of the figure outside the rectangle specified by the \mfpic command to be
removed. The commands can come anywhere. If issued inside an mfpic environment they
affect the current figure only. Otherwise all subsequent figures are affected. Note: this is a
rather rudimentary option. If mplabels is in effect, and the labels extend beyond the nominal
bounds of the figure, they may be clipped off. It has an often unexpected interaction with
truebbox. When both are in effect, METAPOST will produce a “true” bounding box that is
the intersection of two bounding boxes: the true one without clipping, and the box specified
in the \mfpic command. It is possible that the actual figure will be much smaller (even
empty!). This is a property of the METAPOST clip command and we know of no way to
avoid it.

5. centeredcaptions, \usecenteredcaptions, \nocenteredcaptions

Causes multiline captions created by \tcaption to have all lines centered. This has no
effect on the normal IWTEX \caption command.* The commands can be issued anywhere.
If inside an mfpic environment they should come before the \tcaption and affect only it,
otherwise they affect all subsequent figures.

6. debug, \mfpicdebugtrue, \mfpicdebugfalse

Causes MFPIC to write a rather large amount of information to the .1log file and sometimes
to the terminal. Debug information generated by mfpic.tex while loading is probably of
interest only to developers, but can be turned on by giving a definition to the command
\mfpicdebug prior to loading.

* This writer [DHL] feels that \tcaption is too limited and users ought to apply the cap-
tion by other means, such as INTEX’s \caption command, outside the mfpic environment.

7. draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite

Under the metapost option, the various macros that include the EPS files emit rather large
amounts of confusing error messages when the files don’t exist (especially in I¥TEX). For
this reason, before each picture is placed, MFPIC checks for the existence of the graphic
before trying to include it. However, on some systems checking for existence can be very
slow, because the entire TeX search path may need to be checked. Therefore, MFPIC doesn’t
even attempt any inclusion on the first run. The first run is detected by the non-existence
of (file).1, where (file) is the name given in the \opengraphsfile command (see sec-
tion FILES AND ENVIRONMENTS). These options can be used to override this automatic
detection. The command versions must come before the \opengraphsfile command.

These options might be used if, for example, the first figure has an error and is not
created by METAPOST, but you would like MFPIC to go ahead and include the remaining
figures. Then use final. It can also be used to overrule a INTEX global draft option. Or if
(file) .1 exists, but other figures still have errors and you would like several runs to be
treated as first runs until METAPOST has stopped issuing error messages. Then use draft.
These commands also work under the metafont option, but time and error messages are
less of an issue then. If all the figures have been created and debugged, some time might be
saved (with either metafont or metapost) by not writing the output file again, then nowrite
can be used.

8. OPTION SCOPING RULES

Some of these options merely change TEX behavior, others write information to the output
file for METAFONT or METAPOST. Changes in TEX behavior obey the normal TEX grouping
rules, the information written to the output file obeys METAFONT grouping rules. Since
each mfpic environment is both a TEX group and (corresponds to) a METAFONT group, the
following always holds: use of one of the command forms inside of an mfpic environment
makes the change local to that environment.

For options that affect only TEX, the command forms have effects local to any TEX
groups. For options that send information to METAFONT, the commands’ effects are only
restricted by \mfpic environments. The commands influencing only TEX are the fol-
lowing: \usemplabels, \nomplabels,]L \usecenteredcaptions, \nocenteredcaptions,
\mfpicdebugtrue, and \mfpigdebugfalse. The commands affecting only the output file
are \clipmfpic and \noclipmfpic.

The following commands are special: \usemetapost, \usemetafont, \usetruebbox,
\notruebbox, \mfpicdraft, \mfpicfinal, and \mfpicnowrite. Their effects are always
global, partly because they should not be issued inside any mfpic environment (the start-up
code of \mfpic needs to know their settings).

T The macros \usemplabels and \nomplabels obviously affect the output file, but they
do not write anything to the output file that changes any definition or parameter value,
and so no scoping issues are involved.

IV. The Macros.

1. FILES AND ENVIRONMENTS.

\opengraphsfile{(file)}

\closegraphsfile

These macros open and close the METAFONT or METAPOST file which will contain
the pictures to be included in this document. The name of the file will be (file).mf (or
(file) .mp). If the (file) parameter is changed, you will have to reprocess the TEX file after
processing the output file. Do not specify the extension, which is added automatically.

Note: This command will cause (file).mf or (file).mp to be overwritten if it already
exists, so be sure to consider that when selecting the name. Repeating the running of
TEX will overwrite the file created on previous runs, but that should be harmless. For if
no changes are made to mfpic environments, the identical file will be recreated, and if
changes have been made, then you want the file to be replaced with the new version.

\mfpic [(zscale)] [{yscale)]{{xmin) H {zmaz)}H(ymin)H {ymaz)}

\endmfpic

These macros open and close the mfpic environment in which the rest of the macros
below make sense. The \mfpic macro also sets up the local coordinate system for the
picture. The (xscale) and (yscale) parameters establish the length of a coordinate system
unit, as a multiple of the TEX dimension \mfpicunit. If neither is specified, both are
taken to be 1 (i.e., each coordinate system unit is 1 \mfpicunit). If only one is specified,
then they are assumed to be equal. The (zmin) and (zmaz) parameters establish the lower
and upper bounds for the z-axis coordinates; similarly, (ymin) and (ymaz) establish the
bounds for the y-axis. These bounds are expressed in local units—in other words, the
actual width of the picture will be ({(zmaz) — (zmin)) - (zscale) times \mfpicunit, its
height ((ymaz) — (ymin))- (yscale) times \mfpicunit, and its depth zero. One can scale all
pictures uniformly by changing \mfpicunit, and scale an individual picture by changing
(zscale) and (yscale). After loading MFPIC, \mfpicunit has the value 1pt.

Note: Changing \mfpicunit or the optional parameters will scale the coordinate sys-
tem, but not the values of certain parameters that are defined in absolute units. Examples
of these are the default width of the drawing pen, the default lengths of arrowheads,
the default sizes of dashes and dots, etc. If you wish, you can set these to multiples of
\mfpicunit, but it is difficult (and probably unwise) to get them to scale along with the
scale parameters.

In addition to establishing the coordinate system, these scales and bounds are used
to establish the metric for the METAFONT character or bounding box for the METAPOST
figure described within the environment. If any of these parameters are changed, the .tfm
file (METAFONT) or the bounding box (METAPOST) will be affected, so you will have to
reprocess the TEX file after processing the .mf or .mp file.

\mfpicnumber{({num)}

Normally, \mfpic assigns the number 1 to the first mfpic environment, after which
the number is increased by one for each new mfpic environment. This number is used
internally to include the picture. It is also transmitted to the output file where it is used as
the argument to a beginmfpic command. In METAFONT this number becomes the position
of the character in the font file, while in METAPOST it is the extension on the graphic file
that is output. The above command tells MFPIC to ignore this sequence and number the
next mfpic figure with (num) (and the one after that (num) + 1, etc.). It is up to the
user to make sure no number is repeated, as no checking is done. Numbers greater than
255 may cause errors, as TEX assumes that characters are represented by 8-bit numbers.
If the first figure is to be numbered something other than 1, then, under the metapost
option, this command should come before \opengraphsfile, as that command checks for
the existence of the first numbered figure to determine if there are figures to be included.

\begin{mfpic}...\end{mfpic}

In IATEX, instead of using the \mfpic and \endmfpic macros, you may prefer to
use \begin{mfpic} and \end{mfpic}. This is by no means required: IATEX has been
designed so that \begin{command} effectively means \command, and \end{command} effec-
tively means \endcommand, for any TEX command.

The sample file lapictures.tex provided with MFPIC illustrates this use of an mfpic
environment in IATEX.

Note that the \opengraphsfile and \closegraphsfile macros should be used under
those names in IATEX too, as they do not possess a \command. ..\endcommand structure.

The rest of the MFPIC macros do not affect the font metric file ((file).tfm), and so
if these commands are changed or added in your document, you will not have to repeat
the third step of processing (reprocessing with TEX) to complete your TEX document. The
same is true when option metapost is selected, except under pdfTEX or pdfIATEX, and
except when the truebbox option is used.

For the remainder of the macros, the numerical parameters are expressed in the units
of the local coordinate system specified by \mfpic, unless otherwise indicated.

2. FIGURES.
2.1 METAFONT Pairs.

Since many of the arguments of the MFPIC drawing commands are sent to METAFONT to
be interpreted, it’s useful to know something about METAFONT concepts.

In particular, METAFONT has pair objects, which may be constants or variables.
Pair constants have the form (x,y). Pairs are two-dimensional rectangular (cartesian)
quantities, and are clearly useful for representing both points and vectors on the plane.

Moreover, we herein often represent each pair by a brief name, such as p, v or ¢, the
meanings of which are usually obvious in the context of the macro. The succinctness of
this notation also helps us to think geometrically rather than only of coordinates.

METAPOST has these same concepts, but also has color objects, which may also be
constants or variables. Color constants have the form (r,g,b) where r, g, and b are numbers

between 0 and 1 determining the relative proportions of red, green and blue in the color
(rgb model). A color variable is a name, like magenta or RoyalBlue (predefined), or a
color function like cmyk(z,y,z,w) which is defined to convert cmyk values into META-
POST’s native rgb model.

Some commands depend on the value of separately defined parameters. All these
parameters are initialized when MFPIC is loaded. In the following descriptions we give
the initial value of all the relevant parameters. To save having to repeat this for each
command: when METAPOST output is selected, all the commands that draw curves draw
them in drawcolor; those that fill shapes fill them in fillcolor; those that create hatch
lines draw them in hatchcolor; those that create arrowheads draw them in headcolor;
commands that use METAPOST to place text color it in tlabelcolor, and the \gclear
command fills a contour with the special color background. All these colors are predefined
and initialized to black, except background is initially white, but all can be changed by
the user (see the COLORS section below).

2.2 Points, Lines, and Rectangles.

\pointdef{(name)}(x,y)

Defines a symbolic name for points and their coordinates. (name) is any legal TEX
command name without the backslash; z and y are any numbers. For example, after the
command \pointdef{A}(1,3), \A expands to (1,3), while \Ax and \Ay expand to 1 and
3, respectively. Because of the way \tlabel is defined (see section LABELS AND CAPTIONS
below), one cannot use \A to specify where to place a label (unless mplabels is in effect),
but must use (\Ax,\Ay). In most other commands, one can use \A where a pair or point
is required.

\point [(ptsize)]1{(po),(p1),...}

Draws small disks centered at the points (pg), (p1), and so on. If the optional argu-
ment (ptsize) is present, it determines the diameter of the disks, which otherwise equals
the TEX dimension \pointsize, initially 2pt. The disks have a filled interior if the com-
mand \pointfilltrue has been issued (the initial value), \pointfillfalse causes the
interior to be erased and an outline drawn. The color of the filled circles is the predefined
fillcolor, and the inside of the open circles is the predefined background.

\plotsymbol [{size)1{({symbol)}{(po),(p1),...}

Draws small symbols centered at the points (pg), (p1), and so on. The symbols must
be given by name, and the available symbols are Asterisk, Circle, Diamond, Square,
Triangle, Star, SolidCircle, SolidDiamond, SolidSquare, SolidTriangle, SolidStar,
Cross and Plus. The names should be self-explanatory. The “Solid...” symbols are drawn
in fillcolor, the open ones in drawcolor. The (size) defaults to \pointsize as in \point
above. The difference between Star and SolidStar is not very evident unless different
colors are used or the (size) is rather large (around 3pt at printer resolutions, more for
screen viewing). Asterisk consists of five line segments while Star is the standard closed,
ten-sided polygon.

The difference between \pointfillfalse\point... and \plotsymbol{Circle}...is
that the center of the circle will not be erased in the second version.

\polyline{(po), (p1),...}
\lines{(po),(p1),...}

Draws the line segment with endpoints at (pg) and (p1), then the line segment with
endpoints at (p1) and (p2), etc. The result is an open polygonal path through the specified
points, in the specified order. \polyline and \lines mean the same thing.

\polygon{(po),(p1),...}
Draws a closed polygon with vertices at the specified points.

\rect{(po), (p1)}
Draws the rectangle specified by the points (pg) and (p1), these being any two opposite
corners of the rectangle.

2.3 Axes, Axis Marks, and Grids.

[As of version 0.5, azis handling was revamped. The three commands below were retained
for backward compatibility, but alternatives were added with somewhat different behavior.)

\axes [{hlen)]
\xaxis [(hlen)]
\yaxis [(hlen)]

Draw z- and y-axes for the coordinate system. The command \axes is equivalent to
\xaxis followed by \yaxis which produce the obvious. The z- and y-axes extend the full
width and height of the mfpic environment. The optional (hlen) sets the length of the
arrowhead on each axis. The default is the value of the TEX dimension \axisheadlen,
initially 5pt. The shape of the arrowhead is determined as in the \arrow macro below.
The color of the head is headcolor.

Unlike other commands that produce lines or curves, these do not respond to the
prefix macros of the section SHAPE-MODIFIER MACROS. They always draw a solid line
(with an arrowhead unless \axisheadlen is Opt). They do respond to changes in the pen
thickness (see \penwd in section PARAMETERS).

\axis[{hlen)]{({one-axis)}
\doaxes [{hlen)] {{azis-list)}

These produce any of 6 different axes. The parameter (one-azis) can be x or y, to
produce (almost) the equivalent of \xaxis and \yaxis; or it can be 1, b, r, or t to produce
an axis on the border of the picture (left, bottom, right or top, respectively). \doaxes takes
a list of any or all of the six letters (with either spaces or nothing in between) and produces
the appropriate axes. Example: \doaxes{1brt}. The optional argument sets the length of
the arrowhead. In the case of axes on the edges, the default is the value of \sideheadlen,
which mfpic.tex initializes to Opt. For the - and y-axis the default is \axisheadlen as
in \xaxis and \yaxis above.

10

The commands \axis{x}, \axis{y}, and \doaxes{xy} differ from the old \xaxis,
\yaxis and \axes in that these new versions respond to changes made by \setrender (see
subsection Changing the Default Rendering of section SHAPE-MODIFIER MACROS). More-
over, prefix macros may be applied to \axis without error (see section SHAPE-MODIFIER
MACROS): \dotted\axis{x} draws a dotted z-axis, but \dotted\xaxis produces an error
(from METAFONT). (A prefix macro applied to \doaxes generates no error, but only the
first axis in the list will be affected.)

The side axes are drawn by default with a pen stroke along the very edge of the picture
(as determined by the parameters to \mfpic). This can be changed with the commands
\axismargin, \setaxismargins and \setallaxismargins, described below.

Axes on the edges are drawn so that they don’t cross each other. For example,
\doaxes{1lbrt} produces a perfect rectangle. If the x- and y-axis are drawn with \axis or
\doaxis, then they will not cross the side axes. For this to work properly, all the following
margin settings have to be done before the axes are drawn.

\axismargin{{axis)}{(num)}
\setaxismargins{(num)}{{num)}{{num)}{{num)}
\setallaxismargins{(num)}

The (axis) is one of the letters 1, b, r, or t. \axismargin causes the given axis to
be shifted inward by the (num) specified (in graph coordinates). The second command
\setaxismargins takes 4 arguments, using them to set the margins starting with the left
and proceeding anticlockwise. The last command sets all the axis margins to the same
value.

A change to an axis margin affects not only the axis at that edge but also the three
axes perpendicular to it. For example, if the margins are M¢, Myot, Myt and Moy, then
\axis b draws a line starting Mg graph units from the left edge and ending M, units
from the right edge. Of course, the entire line is My units above the bottom edge. The
margins are also respected by the x- and y-axis, but only when drawn with \axis. The
old \xaxis, \yaxis and \axes ignore them.

Special effects can be achieved by lying to one axis about the other margins. For
example, the left and right axis can be made to cross the bottom and top axis with

\setaxismargins{1}{0}{1}{0}

\doaxes{rl}

\setaxismargins{0}{1}{0}{1}

\doaxes{bt}
\xmarks [(len)] {{numberlist)}
\tmarks [({len)] {{numberlist)}
\bmarks [{len)] {{numberlist)}
\ymarks [{len)]{(numberlist)}
\1marks [{len)]{(numberlist)}
\rmarks [({len)] {{numberlist)}

\axismarks{(azis)} [{len)]{{numberlist)}
These macros place hash marks on the appropriate axes at the places indicated by

11

the values in the list. The optional (len) gives the length of the hash marks. If (len) is not
specified, the TEX dimension \hashlen, initially 4pt, is used. The marks on the z- and
y-axes are centered on the respective axis; the marks on the border axes are drawn to the
inside. Both these behaviors can be changed (see below). The commands may be repeated
as often as desired. (The timing of drawing commands can make a difference as outlined
in mppicdoc.tex.) The command \axismarks{x} is equivalent to \xmarks and so on for
each of the six axes. (I would have used \marks, but €I[EX makes that a primitive.)

The (numberlist) is normally a comma-separated list of numbers. In place of this,
one can give a starting number, an increment and an ending number as in the following
example:

\xmarks{-2 step 1 until 2}
is the equivalent of
\xmarks{-2,-1,0,1,2}

One must use exactly the words step and until. There must be spaces between, but the
number of spaces is not significant.* Users should be aware that if any of the numbers are
non-integral then due to natural round-off effects, the last value might be overshot and a
mark not printed there.

\setaxismarks{(azis)}{(pos)}
\setbordermarks{(lpos)}{(bpos)}{(rpos)}{(tpos)}
\setallbordermarks{(pos)}

\setxmarks{(pos)}

\setymarks{({pos)}

These set the placement of the hash marks relative to the axis. The parameter (azis)
is one of the letters x, y, 1, b, r, or t, and (pos) must be one of the literal words inside,
outside, centered, onleft, onright, ontop or onbottom. The second command takes
four arguments and sets the position of the marks on each border. The third command
sets the position on all four border axis to the same value. The last two commands are
abbreviations for \setaxismarks{x}{(pos)} and \setaxismarks{y}{(pos)}, respectively.

Not all combinations make sense (for example, \setaxismarks{r}{ontop}). In these
cases, no error message is produced: ontop and onleft are considered to be equivalent, as
are onbottom and onright. The parameters inside and outside make no sense for the
z- and y-axes, but if used inside means ontop for the z-axis and onright for the y-axis.
These words are actually METAFONT numeric variables defined in the file grafbase.mf,
and the variables ontop and onleft, for example, are given the same value.

* Experienced METAFONT programmers may recognize that anything can be used that is
permitted in METAFONT’s (forloop) syntax. Thus the given example can also be reworded
\xmarks{-2 upto 2}, or even \xmarks{2 downto -2}

12

\grid [(ptsize)1{(zsep), (ysep)}

\gridpoints [{ptsize)]{(xsep), (ysep)}

\lattice [(ptsize)]1{(zsep), (ysep)}

\gridlines{(zsep), (ysep)}

\plrgrid{(rsep), (anglesep)}

\plrpatch{(rmin), (rmaz), (rsep), (tmin), (tmaz), (tsep)}

\grid draws a dot at every point for which the first coordinate is an integer multiple
of the (zsep) and the second coordinate is an integer multiple of (ysep). This behavior of
\grid started with version 0.4.05. Before that, the points were drawn on the left border
(and bottom border) and every (zsep) right of ((ysep) above) those. The diameter of
the dot is determined by (ptsize), the default is .5pt. The commands \gridpoints and
\lattice are synonyms for \grid. \gridlines draws the horizontal and vertical lines
through these same points.

\plrgrid fills the graph with circular arcs and radial lines. The arcs are centered
at (0,0) and the lines emanate from (0,0) (even if (0,0) is not in the graph space). The
corresponding METAFONT commands actually draw enough to cover the graph area and
then clip them to the graph boundaries. If you don’t want them clipped, use \plrpatch
which draws arcs with radii starting at (rmin), stepping by (rsep) and ending with (rmaz).
Each arc goes from angle (tmin) to (tmax). It also draws radial lines with angles starting
at (tmin), stepping by (¢sep) and ending with (¢maz). Each line goes from radius (rmin)
to (rmaz). If (rmaz) — (rmin) doesn’t happen to be a multiple of (rsep), the arc with
radius (rmaz) is drawn anyway. The same is true of the line at angle (tmaz), so that the
entire boundary is always drawn.

2.4 C(lircles and Ellipses.

\circle{{c),(r)}

Draws a circle centered at the point (¢) and with radius (r).

\ellipse [(0)1{(c), (rs),(ry)}

Draws an ellipse with the radius (r,) and y radius (r,), centered at the point (c). The
optional parameter (f) provides a way of rotating the ellipse by (#) degrees counterclockwise
around its center.

2.5 Curves.

\curve [{tension)]{(po), (p1),...}

Draws a METAFONT Bézier path through the specified points, in the specified order.
The optional (tension) defaults to 1 and influences how smooth the curve is. The special
value infinity (in fact, usually anything greater than about 10), makes the curve indis-
tinguishable from \polyline. The higher the value of tension, the sharper the corners on
the curve and the flatter the portions in between. METAFONT requires the tension to be
larger than 0.75.

13

\cyclic[(tension)]{(po),(p1),...}
Draws a cyclic (i.e., closed) METAFONT Bézier curve through the specified points, in
the specified order. The (tension) is as in the \curve command.

Occasionally it is necessary to specify a sequence of points with increasing = coordi-
nates and draw a curve through them. One would then like the resulting curve both to be
smooth and to represent a function (that is, the curve always has increasing « coordinate,
never turning leftward). This cannot be guaranteed with the \curve command unless the
tension is infinity.

\fcncurve [(tension)1{(xo,y0) , (®1,y1),...}

Draws a curve through the points specified. If the points are listed with increasing
(or decreasing) = coordinates, the curve will also have increasing (resp., decreasing) x
coordinates. The (tension) is a number equal to or greater than 1.0 which controls how
tightly the curve is drawn. Generally, the larger it is, the closer the curve is to the polyline
through the points. The default tension is 1.2. (For those who know something about
METAFONT, this “tension” is not the same as the METAFONT notion of tension, nor the
same as the tension in the \curve command, but it functions in a similar fashion.)

2.6 Circular Arcs.

\arc [{format)]1{...}

Draws a circular arc specified as determined by the (format) optional parameter—
this macro is unusual in that the optional (format) parameter determines the format of
the other parameter, as indicated below. The user is responsible for ensuring that the
parameter values make geometric sense.

\arc[s1{(po),(p1), (sweep)}

(Point-Sweep Form —this is the default format.) Draws a circular arc starting from
the point (pg), ending at the point (p;), and covering an arc angle of (sweep) degrees,
measured counterclockwise around the center of the circle. If, for example, the points (pg)
and (p1) lie on a horizontal line with (po) to the left, and (sweep) is between 0 and 360
(degrees), then the arc will sweep below the horizontal line (in order for the arc to be
counterclockwise). A negative value of (sweep) gives a clockwise arc from (pg) to (p1).

\arc[t1{(po), (p1),(p2)}

(Three-Point Form.) Draws the circular arc which passes through all three points
given, in the order given.

\arc[pl{(c), (1), (02), (r)}

(Polar Form.) Draws the arc of a circle with center (c) starting at the angle (6;) and
ending at the angle (65), with radius (r). Both angles are measured counterclockwise from
the positive = axis.

14

\arclcl{(c), (p1),(0)}

(Center-Point Form.) Draws the circular arc with center (c), starting at the point
(p1), and sweeping an angle of (f) around the center from that point. (This is actually
MFPIC’s internal way of handling arcs—all other formats are translated to this format
before drawing.)

2.7 Other Figures.

\turtle{(po), (v1),(va),...}

Draws a line segment, starting from the point (pg), and extending along the (2-dimen-
sional vector) displacement (v1). It then draws a line segment from the previous segment’s
endpoint, along displacement (vs). This continues for all listed displacements, a process
similar to “turtle graphics”.

\sector{{c), (r), (1), (02)}

Draws the sector, from the angle (f1) to the angle (62) inside the circle with center at
the point (c) and radius (r), where both angles are measured in degrees counterclockwise
from the direction parallel to the x axis. The sector forms a closed path. Note: \sector
and \arc [p] have the same parameters, but in a different order.*

2.8 Bar Charts and Pie Charts.

\barchart [(start), (sep), (r)1{{h-or-v)}{(list)}
\chartbar{(num)}

The macro \barchart does not actually draw anything, but computes the \chartbar
rectangles. (h-or-v) should be v if you want the bars to extend vertically from the z-axis,
or h if they should extend horizontally from the y-axis. (list) should be a comma-separated
list of numbers giving the coordinates of the end of each bar (the end that is not on the
axis). The rest of this description refers to the v case; the h case is analogous.

By default the bars are 1 graph unit wide, and the base of the nth bar is the inter-
val [n — 1,n|. The optional parameter consists of three numeric parameters separated by
commas. (start) is the z-coordinate of the left edge of the first bar, (sep) is the distance
between the left edges of adjacent bars, and (r) is the fraction of (sep) occupied by each
bar. The default behavior corresponds to [0,1,1].

The fraction (r) should be between -1 and 1, a negative value indicating that the left
edge referred to above is actually the right edge. For example, if one bar chart is created
with \barchart[1,1,-.4]1{v}{..} and another with \barchart[1,1,.4]{v}{. .} having
the same number of bars, then first will have its nth bar from n — .4 to n, while the second
will have its nth bar adjacent to that one, from n to n + .4. This makes it easy to draw
bars side-by-side for comparison.

After a \barchart command has been issued, the individual bars may be drawn with
\chartbar{1}, \chartbar{2}, etc. These are closed rectangles and can be filled, shaded,

* This apparently was a mistake which we now have to live with so as not to break
existing .tex files.

15

hatched, etc., using appropriate prefix macros (see section SHAPE-MODIFIER MACROS,
below).

\piechart [{dir)(angle)]{{c), (r) I {list)}
\piewedge [(spec)(trans)] {(num)}

The macro \piechart also does not draw anything, but computes the \piewedge
regions described below. The first part of the optional parameter, (dir), is a single letter
which may be either ¢ or a which stand for clockwise or anticlockwise, respectively. It is
common to draw piecharts with the largest wedge starting at 12 o’clock (angle 90 degrees)
and successive wedges clockwise from there. This is the default. You can change the starting
angle from 90 with the (angle) parameter, and the change the direction to counter-clockwise
by specifying a for (dir). It is also traditional to arrange the wedges from largest to smallest,
except there is often a miscellaneous category which is usually last and may be larger than
some others. Therefore \piechart makes no attempt to sort the data. The data is entered
as a comma separated (list) of positive numbers in the second required parameter. These
are only used to determine the relative sizes of the wedges and are not printed anywhere.
The first required parameter should contain a pair (¢) for the center and a positive number
(r) for the radius, separated by a comma.

After a \piechart command has been issued, the individual wedges may be drawn,
filled, etc., using \piewedge{1}, \piewedge{2}, etc. Without the optional argument, the
wedges are located according to the arguments of the last \piechart command. The
optional argument to \piewedge can override this. The parameter (spec) is a single letter,
which can be x, s or m. The x stands for exploded and it means the wedge is moved directly
out from the center of the pie a distance (trans). (trans) should then be a pure number and
is interpreted as a distance in graph units. The s stands for shifted and in this case (trans)
should be a pair of the form ({dz),(dy)) indicating the wedge should be shifted (dz)
horizontally and (dy) vertically (in graph units). The m stands for move to, and (trans) is
then the absolute coordinates ((z),(y)) in the graph where the point of the wedge should
be placed.

2.9 Polar Coordinates to Rectangular.

\plr{((ro),(00)), ((r1),(01)), ...}

Replaces the specified list of polar coordinate pairs by the equivalent list of rect-
angular (cartesian) coordinate pairs. Through \plr, commands designed for rectangular
coordinates can be applied to data represented in polar coordinates—and to data contain-
ing both rectangular and polar coordinate pairs.

16

3. COLORS

3.1 Setting the Default Colors.

\drawcolor [{model)]{{colorspec)}
\fillcolor...

\hatchcolor...

\headcolor...

\tlabelcolor...
\backgroundcolor...

These macros set the default color (METAPOST only) for various drawing elements. Any
curve (with one exception, those drawn by \plotdata), whether solid, dashed, dotted, or
plotted in symbols, will be in the color set by \drawcolor. Set the color used by \gfill
with \fillcolor. For all the hatching commands use \hatchcolor, and for arrowheads,
\headcolor. When mplabels is in effect, the color of labels can be set with \tlabelcolor,
and one can set the color used by \gclear with \backgroundcolor (the same color is used
in the interior of unfilled points drawn with \point). The optional (model) may be one
of rgh, RGB, cmyk, gray, and named. The (colorspec) depends on the model, as outlined
below. Each of these commands sets a corresponding METAPOST color variable with the
same name (except \backgroundcolor sets the color background). Thus one can set the
filling color to the drawing color with \fillcolor{drawcolor}.

3.2 METAPOST Colors.

If the optional (model) specification is omitted, the color specification may be any expres-
sion recognized as a color by METAPOST. In METAPOST, a color is a triple of numbers like
(1,.5,.5), with the coordinates between 0 and 1, representing red, green and blue levels,
respectively. White is given by (1,1,1) and black by (0,0,0). METAPOST also has color
variables and several have been predefined: red, green, blue, yellow, cyan, magenta,
white, and black. All the names in the W TEX COLOR package’s dvipsnam.def are prede-
fined color variable names. Since METAPOST allows color expressions, colors may be added
and multiplied by numerics. Moreover, several color functions have been defined:

cmyk (c,m,y,k)

Converts a cmyk color specification to METAPOST’s native rgb. For example, the com-
mand cmyk(1,0,0,0) yields (0,1,1), which is the definition of cyan.

RGB(R,G,B)

Converts an RGB color specification to rgb. It essentially just divides each component
by 255.

gray (9)
Converts a gray level to a multiple of (1,1,1).

17

named ({(name)), rgb(r,g,b)

These are essentially no-ops. However; rgb will truncate the arguments to the 0-1
range, an unknown (name) is converted to black, and an unknown numeric argument is
set to 0.

As an example of the use of these functions, one could conceivable write:
\drawcolor{0.5*RGB(255,0,0)+0.5%cmyk(1,0,0,0)}

to have all curves drawn in a color halfway between red and cyan (which turns out to be
a dark gray).

3.3 Color Models.

When the optional (model) is specified in the color setting commands, it determines the
format of the color specification:

Model: Specification:

rgb Three numbers in the range 0 to 1 separated by commas.

RGB Three numbers in the range 0 to 255 separated by commas.

cmyk Four numbers in the range 0 to 1 separated by commas.

gray One number in the range 0 to 1, with 1 indicating white, 0 black.

named A METAPOST color variable name either predefined by MFPIC or by the user.

Example: \fillcolor[cmyk]{1,.3,0,.2} and \fillcolor{cmyk(1,.3,0,.2)} are
essentially equivalent. Note that when the optional model is specified, the color specification
must not be enclosed in parentheses. Note also that each model name is the name of a color
function described in the previous subsection. That is how the models are implemented
internally.

3.4 Defining a Color Name.

\mfpdefinecolor{(name)}{{model)}{{colorspec)}

This defines a color variable (name) for later use, either in the commands \drawcolor,
etc., or in the optional parameters to \draw, etc. The name can be used alone or in the
named model. The mandatory (model) and (colorspec) are as above.

A final caution, the colors of an MFPIC figure are stored in the .mp output file, and are
not related to colors used or defined by the IATEX COLOR package. In particular a color de-
fined only by IATEX’s \definecolor command will remain unknown to MFPIC. Conversely,
LaTeX commands will not recognize any color defined only by \mfpdefinecolor.

18

4. SHAPE-MODIFIER MACROS.

Some MFPIC macros operate as shape-modifier macros—for example, if you want to put an
arrowhead on a line segment, you could write: \arrow\lines{(0,0),(1,0)}. These are
always prefixed to some figure drawing command, and apply only to the next following
figure macro (which can be rather far removed) provided that only other prefix commands
intervene. This is a rather long section, but even more modification prefixes are documented
in subsection Transformation of Paths of section AFFINE TRANSFORMS.

In the POSTSCRIPT context (i.e., METAPOST) it is important to note that each prefix
modifies the result of the entire following sequence. In essence prefixes can be viewed as
being applied in the opposite order to their occurrence. Example:

\dashed\gfill\rect{(0,0),(1,1)3}

This adds the dashed outline to the filled rectangle. That is, first the rectangle is defined,
then it is filled, then the outline is drawn in dashed lines. This makes a difference when
colors other than black are used. Drawing is done with the center of the virtual pen stroked
down the middle of the boundary, so half of its width falls inside the rectangle. On the
other hand, filling is done right up to the boundary. In this example, the dashed lines are
drawn on top of part of the fill. In the reverse order, the fill would cover part of the outline.

For the purposes of these macros, a distinction must be made in the figure macros
between “open” and “closed” paths. A path that merely returns to its starting point is
not automatically closed; such a path is open, and must be explicitly closed, for example
by \lclosed (see below). (On the METAFONT level, path closure is achieved by some vari-
ant of ..cycle). The (already) closed paths are: \rect, \circle, \ellipse, \sector,
\cyclic, \polygon, \plrregion, \chartbar, \piewedge, \tlabelrect, \tlabeloval,
\tlabelellipse, \tlabelcircle and \btwnfcn (below).

4.1 Closure of Paths.

\lclosed...

Makes each open path into a closed path by adding a line segment between the end-
points of the path.

\bclosed...
\cbclosed. ..

These macros are similar to \lclosed, except that they close each open path by
drawing a Bézier, or a cubic B-spline, respectively, between the path’s endpoints.

\sclosed...
\uclosed...

These allow METAFONT to choose its notion of the best smooth curve. The former
allows the entire new curve to be redrawn. \sclosed\curve is more or less equivalent to
\cyclic and closing a curve can cause METAFONT to rethink how the original was drawn.
The command \uclosed allows METAFONT to select the closure (subject to smoothness),
but prevents it from changing the original curve.

19

4.2 Reversal and Connection of Paths.

\reverse...

Turns a path around, reversing its orientation. This will affect both the direction of
arrows (e.g. bi-directional arrows can be coded with \arrow\reverse\arrow... —here
the first \arrow modifier applies to the reversed path), and the order of endpoints for a
\connect...\endconnect environment (below).

\connect ... \endconnect

This pair of macros, acting as an environment, add line segments from the trailing
endpoint of one open path to the leading endpoint of the next path, in the given order.
The result is a connected, open path.

Note: In IXTEX, this pair of macros can be used in the form of a IATEX-style environ-
ment called connect —as in \begin{connect}.. \end{connect}.

4.3 Drawing.

When MFPIC is loaded, the initial way in which figures are drawn is with a solid outline.
That is, \lines{(1,0),(1,1),(0,0)} will draw two solid lines connecting the points.
When the macros in this section are used, any previously established default (see Changing
the Default Rendering of section SHAPE-MODIFIER MACROS) is overridden.

\draw [{color)]. ..
Draws the subsequent path using a solid outline. For an example: to both draw a
curve and hatch its interior, \draw\hatch must be used. Default for {color) is drawcolor.

\dashed [(length), {space)]. ..

Draws dashed segments along the path specified in the next command. The default
length of the dashes is the value of the TEX dimension \dashlen, initially 4pt. The default
space between the dashes is the value of the TEX dimension \dashspace, initially 4pt. The
dashes and the spaces between may be increased or decreased by as much as % of their
value, where n is the number of spaces appearing in the curve, in order to have the proper
dashes at the ends. The dashes at the ends are half of \dashlen long.

\dotted[(size), (space)]. ..

Draws dots along the specified path. The default size of the dots is the value of the
TEX dimension \dotsize, initially 0.5pt. The default space between the dots is the value
of the TEX dimension \dotspace, initially 3pt. The size of the spaces may be adjusted as
in \dashed.

\plot [{size), (space)]{{symbol)}. ..

Similar to \dotted except copies of (symbol) are drawn along the path. Possible
symbols are those listed under \plotsymbol above. The default (size) is \pointsize and
the default (space) is \symbolspace, initially 5pt.

20

\plotnodes [{size)]{(symbol)}

This places a symbol (same possibilities as in \plotsymbol) at each node of the path
that follows. A node is one of the points through which METAFONT draws its curve. If one
of the macros \polyline{...} or \curve{...} follows, each of the points listed is a node.
In the \datafile command (below), each of the data points in the file is. In the function
macros (below) the points corresponding to (min), (maz) and each step in between are
nodes. The optional (size) defaults to \pointsize.

\dashpattern{(name)}{(lenl),(len2),..., (len2k)}

For more general dash patterns than \dashed and \dotted provide, there is a gen-
eralized dashing command. One must first establish a named dashing pattern with this
command. (name) should be a legal METAFONT variable name. (Any sequence of letters
and underscores will work.) Try to make it distinctive to avoid undoing some internal vari-
able. (len1) through (len2k) are an even number of lengths. The odd ones determine the
lengths of dashes, the even ones the lengths of spaces. A dash of length Opt means a dot.
An alternating dot-dash pattern can be specified with

\dashpattern{dotdash}{Opt,4pt,3pt,4pt}.

Note: Since pens have some thickness, dashes look a little longer, and spaces a little shorter,
than the numbers suggest. It seems to my eyes better if one increases the specified spaces
(and decreases the specified dashes) by the thickness of the drawing pen (normally 0.5pt).

\gendashed{(name)}...

Once a dashing pattern name has been defined, it can be used in this command to draw
the curve that follows it. Using a name not previously assigned will generate a METAFONT
error, but TEX will not complain. If all the dimensions in a dashpattern are 0, \gendashed
responds by drawing a solid curve. The same is true if the pattern has only one entry. If
the pattern has an odd number of entries, the last one is ignored.

4.4 Arrows.

\arrow [1({headlen)] [r(rotate)] [b{backset)] [c(color)]...

Draws an arrowhead at the endpoint of the open path (or at the last key point of the
closed path) that follows. The optional parameter (headlen) determines the length of the
arrowhead. The default is the value of the TEX dimension \headlen, initially 3pt. The
optional parameter (rotate) allows the arrowhead to be rotated counterclockwise around
its point an angle of (rotate) degrees. The default is 0. The optional parameter (backset)
allows the arrowhead to be “set back” from its original point, thus allowing e.g. double
arrowheads. This parameter is in the form of a TEX dimension—its default value is Opt. If
an arrowhead is both rotated and set back, the rotation affects the direction in which the
arrowhead is set back. The optional {color) defaults to headcolor. The optional parameters
may appear in any order, but the indicated key character for each parameter must always
appear.

21

4.5 Shading, Filling, Erasing, Clipping, Hatching.

These macros can all be used to fill (or unfill) the interior of closed paths, even if the paths
cross themselves. Filling an open curve is technically an error, but the code in grafbase
responds by drawing the path and not doing any filling. These macros replace the default
rendering, that is, when they are used the outline will not be drawn unless an explicit
prefix to do so is present.

\gfill [{color)]...
Fills in the subsequent closed path. Under METAPOST it fills with (color), which de-
faults to fillcolor.

\gclear...

Erases everything inside the subsequent closed path. Under METAPOST it actually
fills with the predefined color background. Since background is normally white and so are
most actual backgrounds, this is usually indistinguishable from clearing.

\gclip...
Erases everything outside the subsequent closed path from the picture. Both \gclear
and \gclip will affect previously placed tlabels if mplabels is in effect.

\shade [{shadesp)]. ..

Shades the interior of the subsequent closed path with dots. The diameter of the dots
is the METAFONT variable shadewd, set by the macro \shadewd{(size)}. Normally this
is 0.5pt. The optional argument specifies the spacing between (the centers of) the dots,
which defaults to the TEX dimension \shadespace, initially 1pt. If \shadespace is less
than shadewd, the closed path is filled with black, as if with \gfi11l. Under METAPOST this
macro actually fills the path’s interior with a shade of gray. The shade to use is computed
based on \shadespace and shadewd. The default values of these parameters correspond
to a gray level of 75% of white.* The METAFONT version attempts to optimize the dots
to the pixel grid corresponding to the printers resolution (to avoid generating “dither
lines”). Because this involves rounding, it will happen that values of \shadespace that are
relatively close and at the same time close to shadewd produce exactly the same shade. By
bad luck, when shadewd is the default 0.5pt, and the printer resolution is 300dpi, values of
\shadespace between .69pt and 1pt create the same shading pattern. Most of the time,
however, values which differ by at least 20% will produce different patterns.

\polkadot [{space)]...

Fills the interior of a closed path with large dots. This is almost what \shade does,
but there are several differences. \shade is intended solely to simulate a gray fill in META-
FONT where the only color is black. So it is optimized for small dots aligned to the pixel

* If \shadewd is w and \shadespace is s, then the level of gray is 1 — (w/s)?, where 0
denotes black and 1 white.

22

grid (in METAFONT). In METAPOST all it does is fill with gray and is intended merely
for compatibility. The macro \polkadot is intended for large dots in any color, and so it
optimizes spacing (a nice hexagonal array) and makes no attempt to align at the pixel
level. The (space) defaults to the TEX dimension \polkadotspace, initially 10pt. The
diameter of the dots is the value of the METAFONT variable polkadotwd, which can be set
with \polkadotwd{(size)}, and is initially 5pt. The dots are colored with fillcolor.

\thatch[{hatchsp), (angle)] [{color)]...

Fills a closed path with equally spaced parallel lines at the specified angle. The thick-
ness of the lines is set by the macro \hatchwd. In the optional argument, (hatchsp) specifies
the space between lines, which defaults to the TEX dimension \hatchspace, initially 3pt.
The (angle) defaults to 0. The (color) defaults to hatchcolor. If \hatchspace is Opt (or
less), the closed path is filled with (color), as if with \gfill. Of the first optional argu-
ments, either both must be present, or both must be absent. For the color argument to be
present, the other optional arguments must also be present.

\lhatchl[{hatchsp)] [{color)]...
Draws lines shading in the subsequent closed path in a “left-oblique hatched” (upper
left to lower right) pattern. It is exactly the same as \thatch [{(hatchsp),-45] [{color)]. ..

\rhatch[{hatchsp)] [{color)]...
Draws lines shading in the subsequent closed path in a “right-oblique hatched” (lower
left to upper right) pattern. It is exactly the same as \thatchl[({hatchsp),45] [{color)]...

\hatch [{hatchsp)] [{color)]...
\xhatch [{hatchsp)] [{color)]...

Draws lines shading in the subsequent closed path in a “cross-hatched” pattern. It is
exactly the same as \rhatch followed by \lhatch using the same (hatchsp) and (color).

4.6 Changing the Default Rendering.

Rendering is the process of converting a geometric description into a drawing. In META-
FONT, this means producing a bitmap (METAFONT calls this a picture), either by stroking
(drawing) a path using a particular pen), or by filling a closed path. In METAPOST it means
producing a POSTSCRIPT description of strokes with pens, and fills

\setrender{(TEX commands)}

Initially, MFPIC uses the \draw command (stroking) as the default operation when
a figure is to be rendered. However, this can be changed to any combination of MFPIC
rendering commands and/or other TEX commands, by using the \setrender command.
This is a local redefinition, so it can be enclosed in braces to restrict its range.

For example, after \setrender{\dashed\shade} the command \circle{(0,0),1}
produces a shaded circle with a dashed outline. Any explicit drawing or filling prefix
replaces this default. Other kinds of prefixes (e.g., \1closed, \arrow, \rotatepath) do
not.

23

4.7 FExamples.

It may be instructive, for the purpose of seeing how the syntax of shape-modifier switches
works, to consider two examples:

\draw\shade\lclosed\lines{...}
which shades inside a polygon and draws its outline; and
\shade\lclosed\draw\lines{...}

which draws all of the outline except the line segment supplied by \1closed, then shades
the interior. And in METAPOST this is just a gray fill which covers the inner half of the
stroke made by \draw.

5. FUNCTIONS AND PLOTTING.

In the following macros, expressions like f(x), g(t) stand for any legal METAFONT expres-
sion, in which the only unknown variables are those indicated (x in the first case, and t in
the second).

5.1 Defining Functions

\fdef{(fen)}H(param1), (param2),.. H{mf-expr)}

Defines a METAFONT function (fen) of the parameters (paraml1), (param?2), ..., by the
METAFONT expression (mjf-ezpr) in which the only free parameters are those named. The
return type of the function is the same as the type of the expression. The function name
(fen) is subject to METAFONT’s rule for variable names. Try to make the names distinctive
to avoid redefining internal METAFONT commands.

The expression (mf-expr) is passed directly into the corresponding METAFONT macro
and interpreted there, so METAFONT’s rules for algebraic expressions apply.

As an example, after \fdef{myfcn}{s,t}{s*t-t}, any place below where a META-
FONT expression is required, you can use myfcn(2,3) to mean 2*3-3 and myfcn(x,x) to
mean X*x-X.

Operations available include +, -, *, /, and ** (x*¥*y= 2¥), with (and) for group-
ing. Functions already available include the standard METAFONT functions round, floor,
ceiling, abs, sqrt, sind, cosd, mlog, and mexp. Note that in METAFONT the operations
* and ** have the same level of precedence, so x*y**z means (xy)*. Use parentheses
liberally!

(Notes: The METAFONT trigonometric functions sind and cosd take arguments in
degrees; mlog(x) = 256 In x, and mexp is its inverse.) You can also define the function (fen)
by cases, using the METAFONT conditional expression

if (boolean): (expr) elseif (boolean): ... else: (expr) f£i.

Relations available for the (boolean) part of the expression include =, <, >, <=, <> and >=.

Complicated functions can be defined by a compound expression, which is a series of
METAFONT statements, followed by an expression, all enclosed in the METAFONT commands
begingroup and endgroup. METAFONT functions can call METAFONT functions, recursively.

24

Many common functions have been predefined in grafbase. These include all the
usual trig functions tand, cotd, secd, cscd, which take angles in degrees, plus variants
sin, cos, tan, cot, sec, and csc, which take angles in radians. Some inverse trig functions
are also available, the following produce angles in degrees: asin, acos, and atan, and the
following in radians: invsin, invcos, invtan. The exponential and hyperbolic functions:
exp, sinh, cosh, tanh, and their inverses 1n (or log), asinh, acosh, and atanh are also
defined.

5.2 Plotting Functions

The plotting macros take two or more arguments. They have an optional first argument,
(spec), which determines whether a function is drawn smooth (as a METAFONT Bézier
curve), or polygonal (as line segments)—if (spec) is p, the function will be polygonal.
Otherwise the (spec) should be s, followed by an optional positive number no smaller than
0.75. In this case the function will be smooth with a tension equal to the number. See the
\curve command for an explanation of tension. The default {spec) depends on the purpose
of the macro.

One compulsory argument contains three values (min), (maz) and (step) separated
by commas. The independent variable of a function starts at the value (min) and steps
by (step) until reaching (maz). If (maz) — (min) is not a whole number of steps, then
round(({maz) — (min))/(step)) equal steps are used. One may have to experiment with
the size of (step), since METAFONT merely connects the points corresponding to these steps
with what 4¢ considers to be a smooth curve. Smaller (step) gives better accuracy, but too
small may cause the curve to exceed METAFONT’s capacity or slow down its processing.
Increasing the tension may help keep the curve in line, but at the expense of reduced
smoothness.

There are one or more subsequent arguments, each of which is a METAFONT function
or expression as described above.

\function[(spec)1{{zmin), (zmaz), (step)H f(x)}
Plots f(x), a METAFONT numeric function or expression of one numeric argument,
which must be denoted by a literal x. The default (spec) is s.

\parafcn[(spec)]1{(tmin), (tmaz), (step)}H(pfen)}

Plots the parametric path determined by (x(t),y(t)) =(pfen)(t), where (pfen) is a
METAFONT function or expression of one numeric argument t, returning a METAFONT pair
(such as (x,y)). Or a pair of numeric expressions enclosed in parentheses and separated
by a comma. The default (spec) is s. Example: \parafcn{ 0,1,.1}{2*(t,t*t)} plots a
smooth parabola from (0, 0) to (2, 2).

\plrfecnl({spec)]{(Omin),(Imaz),(Ostep)H{f(t)}

Plots the polar function determined by r = f(6), where f is a METAFONT numeric
function or expression of one numeric argument, and 6 varies from (fmin) to (Imazx)
in steps of (fstep). Each 6 value is interpreted as an angle measured in degrees. In the
expression f(t), the unknown t stands for 6. The default (spec) is s.

25

\btwnfcn [(spec)]{{xmin), (xmaz), (step)}H{ f(x)Hg(x)}

Draws the region between the two functions f(x) and g(z), these being numeric func-
tions of one numeric argument x. The region is bounded also by the vertical lines at (zmin)
and (zmaz). Unlike the previous function macros, the default (spec) is p —this macro is
intended to be used for shading between drawn functions, a task for which smoothness is
usually unnecessary.

\plrregion[(spec)1{(Omin), (@maz), (Ostep)X{f(t)}

Plots the polar region determined by r = f(), where f is a METAFONT numeric
function of one numeric argument t. The 6 values are angles (measured in degrees), varying
from (fmin) to (Imax) in steps of (fstep). In the expression f(t), the t stands for 6. The
region is also bounded by the angles (fmin) and (fmazx), i.e. by the line segments joining
the origin to the endpoints of the function. The default (spec) is p —this macro is intended
to be used for shading a region with the boundary drawn, a task for which smoothness is
usually unnecessary.

5.3 Plotting external data files

\datafile [(spec)]{(file)}
\smoothdata [{tension)]
\unsmoothdata

\datafile defines a curve connecting the points listed in the file (file). The (spec)
may be either p or s followed by a tension value (as in \curve). If no (spec) is given,
the default is initially p, but \smoothdata may be used to change this. That is, after
\smoothdata [(tension)] the default (spec) is changed to s(tension). If the tension param-
eter is not supplied it defaults to 1.0. The command \unsmoothdata restores the default
(spec) to p.

By default, each non-blank line in the file is assumed to contain at least two numbers,
separated by whitespace (blanks or tabs). The first two numbers on each line are assumed
to represent the x- and y-coordinates of a point. Initial blank lines in the file are ignored,
as are comments. The comment character in the data file is assumed to be %, but it
can be reset using \mfpdatacomment (below). Any blank line other than at the start of
the file causes the curve to terminate. The \datafile command may be preceded by
any of the prefix commands, so that, for example, a closed curve could be formed with
\lclosed\datafile{data.dat}.

The \datafile command has a second, independent use. Any MFPIC command (other
than one that prints text labels) that takes as its last argument a list of points (or numerical
values), separated by commas, can now have that list replaced by values in an external
data file. For example, if a file numlist.dat contains one or more numerical value per line
separated by blanks, then

\using{#1 #2}{#1}

\xmarks\datafile{numlist.dat}
can be used to put hash marks on the z-axis at each of the points corresponding to
the first number on each line. This \using command tells \mfpic to discard all but the

26

first number on each line and include that number in the list. The MFPIC macros that
allow this usage of \datafile are, for numeric data: \piechart, \barchart , and all
the axis marks commands; for point or vector data: \point, \plotsymbol, \polyline,
\polygon, \fcncurve, \curve, \cyclic, \turtle, \gspline, \closedgspline, \cspline,
and \closedcspline.

The \datafile drawing command described above produces the equivalent of using
\polyline\datafile or of \curve[(tension)]\datafile if \smoothdatal[(tension)] has
been used.

\mfpdatacomment\(char)

Changes (char) to a comment character and changes the usual TEX comment character
% to an ordinary character while reading a datafile for drawing.

\using{(in-pattern)}{{out-pattern)}

Used to change the assumptions about the format of the data file. For example, if there
are four numbers on each line separated by commas, to plot the third against the second
(in that order) you can say \using{#1,#2,#3,#4}{(#3,#2)}. This means the following:
Everything on a line up to the first comma is assigned to parameter #1, everything from
there up to the second comma is assigned to parameter #2, etc. Everything from the third
comma to the end of line is assigned to #4. When the line is processed by TEX a META-
FONT pair is produced representing a point on the curve. METAFONT pair expressions can
be used in the output portion of \using. For example \using{#1,#2,#3}{(#2,#1)/10}
or even \using{#1,#2,#3}{polar (#2,#1)} if the data are polar coordinates. As a spe-
cial case, you can plot any number against its sequence position, with something like
\using{#1,#2,#3}{ (\sequence,#1)}. Here, the macro \sequence will take on the values
1, 2, etc. as lines are read from the file. The default setting is \using{#1 #2 #3}{(#1,#2)}.
MFPIC provides the command \usingpairdefault to reset this default. It also provides the
command \usingnumericdefault as the equivalent of \using{#1 #2}{#1} (seen above
in the \xmarks\datafile example). The \using command cannot normally be used in
the replacement text of another command.

Note that the default value of \using appears to reference three arguments. If there
are only two numbers on a line separated by whitespace, this will still work because of
TEX’s argument matching rules. TEX’s file reading mechanism normally converts the EOL
to a space, but there are exceptions so MFPIC always adds a space at the end of each line
read in to be on the safe side. Then the default definition of \using reads everything up to
the first space as #1 (whitespace is normally compressed to a single space by TEX’s reading
mechanism), then everything to the second space (the one added at the end of the line,
perhaps) is #2, then everything to the EOL is #3. This might assign an empty argument
to #3, but it is discarded anyway.

If the numerical data contain percentages with explicit % signs, then choose another
comment character with \mfpdatacomment. This will change % to an ordinary character in
the data file. However, in your \using command it would still be read as a comment. The
following example shows how to overcome this:

27

\makepercentother
\using{#1% #2 #3}{(#1/100,#2)}
\makepercentcomment

Here is an analysis of the meaning of this example: everything in a line, up to the first
percent followed by a space is assigned to parameter #1, everything from there to the next
space is assigned to #2 and the rest of the line (which may be empty) is #3. On the output
side in the above example, the percentage is divided by 100 to convert it to a fraction, and
plotted against the second parameter. Note: normal comments should not be used between
\makepercentother and \makepercentcomment, for obvious reasons.

\plotdata[(spec)]{(file)}

This plots several curves from a single file. The (spec) and the command \smoothdata
have the same effect on each curve as in the \datafile command. The data for each curve
is a succession of nonblank lines separated from the data for the next curve by a single
blank line. A pair of successive blank lines is treated as the end of the data. No prefix
macros are permitted in front of \plotdata.

Each successive curve in the data file is drawn differently. By default, the first is drawn
as a solid line the next dashed, the third dotted, etc., through a total of six different line
types. A \gendashed command is used with predefined dashpatterns named dashtypeO
through dashtypeb. This behavior can be changed with:

\coloredlines
\pointedlines
\datapointsonly
\dashedlines

The command \coloredlines changes to cycling through eight different colors (start-
ing with black). This has an effect only for METAPOST. The command \pointedlines
causes \plotdata to use \plot{{symbol)} commands, cycling through nine different sym-
bols. The command \datapointsonly causes \plotdata to use \plotnodes{(symbol)}
commands to plot the data points only. (See the Appendix for more details.) The com-
mand \dashedlines restores the default. If, for some reason, you do not like the default
starting line style (say you want to start with a color other than black), you can use one
of the following commands.

\mfplinetype{(num)}, or
\mfplinestyle{{num)}

Here (num) is a non-negative number, less than the number of different drawing
types available. The four previous commands reset the number to 0, so if you use one of
them, issue \mfplinetype after it. The different line styles are numbered starting from
0. If two or more \plotdata commands are used in the same mfpic environment, the
numbering in each continues where the one before left off (unless you issue one of the
commands above in between). \mfplinestyle means the same as \mfplinetype, and
is included for compatibility. See the Appendix to find out what dashpattern, color or
symbol corresponds to each number.

28

The sole exception to the general rule that all curves are drawn in drawcolor is the
\plotdata command after \coloredlines has been issued.

The commands \using, \mfpdatacomment and \sequence have the same meaning
for \plotdata as they do for \datafile (above). The sequence numbering for \sequence
starts over with each new curve.

6. LABELS AND CAPTIONS.
6.1 Setting Text.

The macros \tlabel, \tlabels, \axislabels and \tcaption do not affect the META-
FONT file ((file).mf) at all, but are added to the picture by TEX. If metapost is in effect
but mplabels is not, they do not affect the METAPOST file. In these cases, if these macros are
the only changes or additions to your document, there is no need to repeat the processing
with METAFONT or METAPOST nor the reprocessing with TEX in order to complete your
TEX document.

\tlabel [(just)] ({z), (y)) {{label text)}
\tlabels{(params;) (paramss) ...}

Places TEX labels on the graph. (Not to be confused with IATEX’s \1abel command.)
The special form \tlabels (note the plural) essentially just applies \tlabel to each set
of parameters listed in its argument. That is, each (paramsy) is a valid set of parameters
for a \tlabel command. These can be separated by spaces, newlines, or nothing at all.

The last required parameter is ordinary TEX text. The pair ({(z),{y)) gives the coor-
dinates of a point in the graph where the text will be placed. It may optionally be enclosed
in braces. In fact, if mplabels is in effect the syntax

\tlabel [(just)]{(pair-list)}{{label text)}

may be used, where (pair-list) is any expression recognized as a pair by METAPOST,
or a comma-separated list of such pairs.

The optional parameter [(just)] specifies the justification, the relative placement of
the label with respect to the point ({z),(y)). It is a two-character sequence where the
first character is one of t (top), ¢ (center), b (bottom), or B (Baseline), to specify vertical
placement, and the second character is one of 1 (left), ¢ (center), or r (right), to specify
horizontal placement. These letters specify what part of the text is to be placed at the
given point, so r puts the right end of the text there—which means the text will be left of
the point.

When mplabels is in effect, the two characters may optionally be followed by a number,
specifying an angle in degrees to rotate the text about the point ({(z),{(y)). If the angle is
supplied without mplabels it is ignored after a warning. If the angle is absent, there is no
rotation. Note that the rotation takes place after the placement. For example, [cr] will
place the text left of the point, while [cr180] will place the text right of the point (and
upsidedown, of course).

There should be no spaces before or between the first two characters. However the
number, if present, is only required to be a valid METAPOST numerical expression containing

29

no bracket characters; as such, it may contain some spaces (e.g., around operations as in
45 + 30).

A multiline \tlabel may be specified by explicit line breaks, which are indicated
by the \\ command. This is a very rudimentary feature. By default it left justifies the
lines and causes \tlabel to redefine \\. One can center a line by putting \hfil as the
first thing in the label text, and right justify by putting \hfill there (these are TEX
primitives). Redefining \\ can interfere with IATEX’s definition. For better control in INTEX
use \shortstack inside the label (or a tabular environment or some other environment
which always initializes \\ with its own definition).

If the label goes beyond the bounds of the graph in any direction, the box containing
the graph is expanded to make room for it. (Note: in this behavior it differs from the WTEX
picture environment.)

If the mplabels option is in effect, \tlabel will write a btex ... etex group to the
output file, allowing METAPOST to arrange for typesetting the label. In this case, the label
is part of the picture, rather than being laid on top of it. It may therefore be covered up
by MFPIC later filling macros, or clipped off by \gclear or\gclip.

\everytlabel{(TEX-code)}

One problem with multi-line \tlabels is that each line of their contents constitutes a
separate group. This makes it difficult to change the \baselineskip (for example) inside
a label. The command \everytlabel saves it’s contents in a token register and the code
is issued in each \tlabel, as the last thing before the actual line(s) of text. Any switch
you want to apply to every line can be supplied. For example

\everytlabel{\bf\baselineskip 10pt}

will make every line of every \tlabel’s text come out bold with 10 point baselines. The
effect of \everytlabel is local to the mfpic environment, if it is issued inside one. Note
that the lines of a tlabel are wrapped in a box, but the commands of \everytlabel are
outside all of them, so no actual text should be produced by these commands.

Using \tlabel without an optional argument is equivalent to specifying [B1]. Use
the following command to change this behavior.

\tlabeljustify{(just)}

After this command the placement of all subsequent labels without optional argument
will be as specified in this command. For example, \tlabeljustify{cr45} would cause
all subsequent \tlabel commands lacking an optional argument to be placed as if the
argument [cr45] were used in each.

\tlabeloffset{(hlen)}{(vien)}
\tlabelsep{(len)}
The first command causes all subsequent \tlabel commands to shift the label right by
(hlen) and up by (vlen) (negative lengths cause it to be shifted left and down, respectively).
The \tlabelsep command causes labels to be shifted by the given amount in a direc-
tion that depends on the optional positioning parameter. For example, if the first letter is

30

t the label is shifted down by the amount (len) and if the second letter is 1 it is also shifted
right. In all cases it is shifted away from the point of placement (unless the dimension is
negative). If c or B is the first parameter, no vertical shift takes place, and if c is the second,
there is no horizontal shift. This is intended to be used in cases where something has been
drawn at that particular point, in order to separate the text from the drawing, but the
value is also written to the output file for use by \tlabelrect and related commands.

\axislabels{(azis)} [(just)] {{(txt1)}(n1), {(tzta)}(ns),...>}

This command places the given TEX text ({tzty)) at the given positions ({(ny)) on
the given axis, (azis), which must be a single letter and one of 1, b, r, t, x, or y. The
text is placed as in \tlabels (including the taking into account of \tlabelsep and
\tlableoffset), except that the default justification depends on the axis (the settings
of \tlabeljustify are ignored). In the case of the border axes, the default is to place
the label outside the axis and centered. So, for example, for the bottom axis it is [tc].
The defaults for the - and y-axis are below and left, respectively. The optional (just) can
be used to change this. For example, to place the labels inside the left border axis, use
[c1]. If mplabels is in effect, rotations can be included in the justification parameter. For
example, to place the text strings “first”, “second” and “third” just below the positions
1, 2 and 3 on the z-axis, rotated so they read upwards at a 90 degree angle, one can use
\axislabels{x}[cr90]{{first}1, {second}2, {third}3}

\plottext [(just)]{({text)}H (zo,y0), (z1,y1), ...}

Similar in effect to \point and \plotsymbol (but without requiring METAFONT),
\plottext places a copy of (text) at each of the listed points. It simply issues multiple
\tlabel commands with the same text and optional parameter, but at the different points
listed. This is intended to plot a set of points with a single letter or font symbol (instead of
a METAFONT generated shape). Like \axislabels, this does not respond to the setting of
\tlabeljustify. It has a default setting of [cc] if the optional argument is omitted. The
points may be MetaPost pair expressions enclosed in braces under mplabels. This command
is actually unnecessary under mplabels as the plain \tlabel command can then be given
a list of points. The \tlabel command is more efficient.

\mfpverbtex{(TEX-cmds)}

This writes a verbatimtex block to the .mp file. It makes sense only if the mplabels
option is used and so only for METAPOST. The (TEX-cmds) in the argument are written to
the .mp file, preceded by the METAPOST command verbatimtex and followed by etex. Line
breaks within the (TEX-cmd) are preserved. The \mfpverbtex command must come before
any \tlabel that is to be affected by it. Any settings common to all mfpic environments
should be in a \mfpverbtex command preceding all such environments. It may be issued at
any point after MFPIC is loaded, and any number of times. Because of the way METAPOST
handles verbatimtex material, the effects are not constrained by any grouping unless one
places grouping commands within verbatimtex material.

31

\tcaption[(mazwd), (linewd)]{{caption text)}

Places a TEX caption at the bottom of the graph. (Not to be confused with IATEX’s
similar \caption command.) The macro will automatically break lines which are too much
wider than the graph—if the \tcaption line exceeds (mazwd) times the width of the graph,
then lines will be broken to form lines at most (linewd) times the width of the graph. The
default settings for (mazwd) and (linewd) are 1.2 and 1.0, respectively. \tcaption typesets
its argument twice (as does INTEX’s \caption), the first time to test its width, the second
time for real. Therefore, the user is advised not to include any global assignments in the
caption text.

If the \tcaption and graph have different widths, the two are centered relative to each
other. If the tcaption takes multiple lines, then the lines are both left- and right-justified
(except for the last line), but the first line is not indented. If the option centeredcaptions
is in effect, each line of the caption will be centered.

In a \tcaption, Explicit line breaks may be specified by using the \\ command.

Many MFPIC users find the \tcaption command too limiting (one cannot, for example,
place the caption to the side of the figure). It is common to use some other method (such
as INTEX’s \caption command in a figure environment). The dimensions \mfpicheight
and \mfpicwidth (see section PARAMETERS below) might be a convenience for plain TEX
users who want to roll their own caption macros.

6.2 Curves Surrounding \tlabels

\tlabelrect [{rad)] ({(z), (y)){(text)}
\tlabelrect [{rad)]{(pair)}{(text)}

Produces a closed rectangle containing the text-box of (text). The text-box is here
defined to be the bounding box of the text, increased on all four sides by the value set
with \tlabelsep (see the section LABELS AND CAPTIONS, above). This command places
the text centered at ({(x),(y)). Under mplabels, a pair expression in braces may be used to
specify the point. This command may be preceded by prefix macros (see the section SHAPE-
MODIFIER MACROS, above). The optional argument (rad) is a dimension, defaulting to
Opt, that produces rounded corners made from quarter-circles of the given radius. If the
corners are rounded, the sides are expanded slightly so the resulting shape still encompasses
the complete text-box. There are no provisions for rotating the text, even if mplabels is in
effect, nor will it do any justification except centering. There is a “star form” \tlabelrect*
which produces the rectangle but omits placing the text.

\tlabeloval [{mult)] ({z), (y)){(text)}
\tlabeloval [{mult)]1{{pair)}{({text)}

Similar to \tlabelrect, except it draws an ellipse. The ellipse is calculated to have
the same ratio of width to height as the text-box (defined above), the optional (mult) is
a multiplier that increases or decreases this ratio. Values of (mult) larger than 1 increase
the width and decrease the height. The ellipse is always sized so that it passes through the
four corners of the text box. There are no provisions for rotating the text, even if mplabels

32

is in effect, nor will it do any justification except centering. As with \tlabelrect, there
is a “star form” that omits the text.

\tlabelellipse[(ratio)] ({z), (y)) {(text)}
\tlabelellipse [{ratio)]{({pair)}{(text)}
\tlabelcircle({(z), (y)) {(text)}
\tlabelcircle{(pair)}{{text)}

Draws the smallest ellipse centered at the point that encompasses the text-box (defined
as above) and that has a ratio of width to height equal to (ratio); then places the given
text centered at the point. The default ratio is 1, which produces a circle. \tlabelcircle
is the same as \tlabelellipse, and is intended for use when no optional argument is
given in order to describe the shape being drawn. As with \tlabelrect, there is a “star
form” that omits the text.

In the above \tlabel... curves, the optional parameter should be positive. If it is
zero, all the curves silently revert to \tlabelrect. If it is negative, it is silently accepted.
In the case of \tlabelrect this causes the corners to be concave and reversed, a rather
bizarre effect. In the other cases, there is no visible effect, except the sense of the curve is
reversed.

One can surround rotated text with one of these curves by the simple expedient
of using the transformation prefix \rotatepath (see the section TRANSFORMATION OF
PATHS, below) with the star form, and then add the same text with a \tlabel command
at the same point with the same rotation.

7. SAVING AND REUSING AN MFPIC PICTURE.

These commands have been changed from versions prior to 0.3.14 in order to behave more
like the IATEX’s \savebox, and also to allow the reuse of an allocated box. Past files that
use \savepic will have to be edited to add \newsavepic commands that allocate the TEX
boxes.

\newsavepic{(picname)}
\savepic{(picname)}
\usepic{(picname)}
\newsavepic allocates a box (like INTEX’s \newsavebox) in which to save a picture.
As in \newsavebox, (picname) is a control sequence. Example: \newsavepic{\fool.
\savepic saves the next \mfpic picture in the named box, which should have been
previously allocated with \newsavepic. (This command should not be used inside an
mfpic environment.) The next picture will not be placed, but saved in the box for later use.
This is primarily intended as a convenience. One could use \savebox{(picname)}{(entire
mfpic environment)}, but \savepic avoids having to place the mfpic environment in
braces, and avoids one extra level of TEX grouping. It also avoids reading the entire mfpic
environment as a parameter, which would nullify MFPIC’s efforts to preserve line breaks in
parameters written to the METAFONT output file. If you repeat \savepic with the same
(picname), the old contents are replaced with the next picture.

33

\usepic copies the picture that had been saved in the named box. This may be
repeated as often as liked to create multiple copies of one picture.

8. PICTURE FRAMES.

When TgX is run but before METAFONT or METAPOST has been run on the output file,
MFPIC detects that the .tfm file is missing or that the first METAPOST figure file (file) .1
is missing. In these cases, the mfpic environment draws only a rectangular frame with
dimensions equal to the nominal size of the picture, containing the figure name and number
(and any TEX labels). The command(s) used internally to do this are made available to
the user.

\mfpframe [(fsep)] (material-to-be-framed)\endmfpframe
\mfpframed[{fsep)]{(material-to-be-framed)}

These surround their contents with a rectangular frame consisting of lines with thick-
ness \mfpframethickness separated from the contents by the (fsep) if specified, oth-
erwise by \mfpframesep. The default value of the TEX dimensions \mfpframesep and
\mfpframethickness are 2pt and 0.4pt, respectively. The \mfpframe ... \endmfpframe
version is preferred around mfpic environments or verbatim material since it avoids read-
ing the enclosed material before appropriate \catcode changes go into effect. In IATEX,
one can also use the \begin{mfpframe} ... \end{mfpframe} syntax.

An alternative way to frame mfpic pictures is to save them with \savepic (see pre-
vious section) and issue a corresponding \usepic command inside any framing environ-
ment/command of the user’s choice or devising.

9. AFFINE TRANSFORMS.

Coordinate transformations that keep parallel lines in parallel are called affine trans-
forms. These include translation, rotation, reflection, scaling and skewing (slanting). For
the METAFONT coordinate system only—that is, for paths, but not for \tlabel’s (let alone
\tcaption’s)—MFPIC provides the ability to apply METAFONT affine transforms.

9.1 Affine Transforms of the METAFONT Coordinate System.

\coords ... \endcoords

All affine transforms are restricted to the innermost enclosing \coords...\endcoords
pair. If there is no such enclosure, then the transforms will apply to the rest of the mfpic
environment

Note: In IATEX, a coords environment may be used.

\applyT{(transformer)}

Apply the METAFONT (transformer) to the current coordinate system. For example,
the MFPIC TEX macro \zslant#1 is implemented as \applyT{zslanted #1} where the
argument #1 is a METAFONT pair, such as (z,y).

Transforms provided by MFPIC.

\rotate{6} Rotates around origin by 6 degrees

34

\rotatearound{p}{0} Rotates around point p by 6 degrees

\turn[p] {0} Rotates around point p (origin is default) by 6 degrees
\mirror{pi; Hp2}

\reflectabout{p;}{p2} Reflects about the line p;--p2

\shift{p} Shifts origin by the vector p

\scale{s} Scales uniformly by a factor of s

\xscale{s} Scales only the X coordinates by a factor of s
\yscale{s} Scales only the Y coordinates by a factor of s
\zscale{p} Scales uniformly by magnitude of p, and rotates by angle of p
\xslant{s} Skew in X direction by the multiple s of Y’
\yslant{s} Skew in Y direction by the multiple s of X
\zslant{s} See zslanted in grafdoc.tex

\boost{x} Special relativity boost by x

\xyswap Reflects in the line Y = X

When any of these commands is issued, the effect is to transform all subsequent figures
(within the enclosing coords or mfpic environment). In particular, attention may need to
be paid to whether these transformations move (part of) the figure outside the space
allotted by the \mfpic command parameters.

A not-so-obvious point (even to the creators of MFPIC) is that if several of these trans-
formations are applied in succession, then figures are transformed as if the transformations
were applied in the reverse order, similar to the application of prefix macros (as well as
application of transformations in mathematics: 717>z means apply 7T to the result, after
applying 75 to z).

9.2 Transformation of Paths.

In the previous section we discussed transformations of the METAFONT coordinate system.
Those macros affect the drawing of paths and other figures, but do not change the actual
paths. We will explain the distinction after introducing the following two macros

\store{(path variable)}{(path)}

This stores the following (path) in the specified METAFONT (path variable). Any valid
METAFONT variable name will do, in particular, any sequence of letters and underscores
will do. The stored path may later be used as a figure macro using \mfobj (below).

\mfobj{(path expression)}

The (path expression) is a previously stored path variable, or a valid METAFONT ex-
pression combining such variables and/or constant paths. This allows the use of path va-
tiables or expressions as figure macros, permitting all prefix operations, etc.. Here’s some
oversimplified uses of \store and \mfobj:

\store{f}{\circle{...}} % store a circle
\dotted\mfobj{f} % now draw it dotted
\hatch\mfobj{f} % and hatch its interior

% Store two curves:

35

\store{f}{\curve{...}}
\store{g}t{\curve{...}}

% Store two combinations of them:

\store{h}{\mfobj{f..g..cycle}} % a MF path expression
\store{k}{%

\1lclosed\connect

\mfobj{f \mfobj{g}

\endconnect}
\dotted\mfobj{f} % draw the first dotted
\dotted\mfobj{g} % then the second
\shade\mfobj{h} % now shade one combination
\hatch\mfobj{k} % and hatch the other

Getting back to coordinate transforms. If one changes the coordinate system and then
stores and draws a curve, say by

\coords
\rotate{45 deg}
\store{xx}{\rect{(0,0),(1,1)}}
\dashed\mfobj{xx}
\endcoords
one will get a transformed picture, but the object \mfobj{xx} will contain the simple,
unrotated rectangular path and drawing it later (outside the coords environment) will
prove that. This is because the coords environment works at the drawing level, not at the
definition level. In oversimplified terms, \dashed invokes the transformation, not \store
The following transformation prefixes provide a means of actually creating and storing a
transformed path.

\rotatepath{({z),
\shiftpath{({dz),
\scalepath{ ({z),(
\xscalepath{(x
\yscalepath{(y
\slantpath{(y)
Y
T

),<9>
NY..
»(8)}
(

)
Y
)
(s)}
(s)}
i

{
)

(y
(d
)
$)F. ..
$)F. ..
'}
\xslantpath{($)F. ..
\yslantpath{($)F. ..
\reflectpath{(pi), (p2)}.
\xyswappath...

\rotatepath rotates the following path by (f) degrees about point ({z),(y)). After
the commands:

\store{xx}{\rotatepath{(0,0), 45}\rect{(0,0),(1,1)}}

)
)
)
)
)

H

the object \mfobj{xx} contains an actual rotated rectangle, as drawing it will prove.
The above macro, and the five that follow are extremely useful (and better than coords
environments) if one needs to draw a figure, together with many slightly different versions
of it.

36

\shiftpath shifts the following path by the horizontal amount (dz) and the vertical
amount (dy).

\scalepath scales (magnifies or shrinks) the following path by the factor (s), in such
a way that the point ((z),(y)) is kept fixed. That is

\scalepath{(0,0),2H\rect{(0,0),(1,1)}
is essentially the same as \rect{(0,0),(2,2)}, while
\scalepath{(1,1),2X\rect{(0,0),(1,1)}

is the same as \rect{(-1,-1),(1,1)}. In both cases the rectangle is doubled in size. In
the first case the lower left corner stays the same, while in the second case the the upper
right corner stays the same.

\xscalepath is similar to \scalepath, but only the z-direction is scaled, and all
points with first coordinate equal to (x) remain fixed. \yscalepath is similar, except the
y-direction is affected.

\slantpath applies a slant transformation to the following path, keeping points with
second coordinate equal to (y) fixed. That is, a point p on the path is moved right by
an amount proportional to the height of p above the line y = (y), with s being the
proportionality factor. Vertical lines in the path will acquire a slope of 1/s, while horizontal
lines stay horizontal.

\xslantpath is an alias for \slantpath

\yslantpath is similar to \xslantpath, but exchanges the roles of and y coordi-
nates.

\reflectpath returns the mirror image of the following path, where the line deter-
mined by the points (p1) and (p2) is the mirror.

\xyswappath returns the path with the roles of x and y exchanged. This is almost
like \reflectpath{(0,0),(1,1)}, and produces the same result if the x and y scales of
the picture are the same. However, \reflectpath compensates for such different scales
(so the path shape remains the same), while \xyswappath does not (so that after a swap,
verticals become horizontal and horizontals become vertical). One cannot have both.

10. PARAMETERS.

There are many parameters in MFPIC which the user can modify to obtain different effects,
such as different arrowhead size or shape. Most of these parameters have been described
already in the context of macros they modify, but they are all described together here.

Many of the parameters are stored by TEX as dimensions, and so are available even if
there is no METAFONT file open; changes to them are not subject to the usual TEX rules of
scope however: they are only limited by the mfpic environment, if they are set inside one.
This is for consistency: other parameters are stored by METAFONT (so the macros to change
them will have no effect unless a METAFONT file is open) and the changes are subject to
METAFONT’s rules of scope—to the MFPIC user, this means that changes inside the \mfpic
... \endmfpic environment are local to that environment, but other TEX groupings have
no effect on scope. Some commands (notably those that set the axismargins and \tlabel
parameters) change both TEX parameters and METAFONT parameters, and it is important
to keep then consistent.

37

\mfpicunit
This TEX dimension stores the basic unit length for MFPIC pictures—the = and y
scales in the \mfpic macro are multiples of this unit. The default value is 1pt.

\pointsize

This TEX dimension stores the diameter of the circle drawn by the \point macro and
the diameter of the symbols drawn by \plotsymbol and by \plot. The default value is
2pt.

\pointfilltrue and \pointfillfalse
This TEX boolean switch determines whether the circle drawn by \point will be filled
(true) or open (outline drawn, background erased). The default is true. This value is local

to any TEX group.

\pen{(drawpensize)}
\drawpen{(drawpensize)}
\penwd{(drawpensize)}

Establishes the width of the normal drawing pen. The default is 0.5pt. This width
is stored by METAFONT. The shading dots and hatching pen are unaffected by this. There
exist three aliases for this command, the first two to maintain backward compatibility, the
last one for consistency with other dimension changing commands.

\shadewd{(dotdiam)}
Sets the diameter of the dots used in the shading macro. The drawing and hatching
pens are unaffected by this. The default is 0.5pt

\hatchwd{(hatchpensize)}
Sets the line thickness used in the hatching macros. The drawing pen and shading
dots are unaffected by this. The default is 0.5pt.

\polkadotwd{(polkadotdiam)}
Sets the diameter of the dots used in the \polkadot macro. The default is 5pt.

\headlen
This TEX dimension stores the length of the arrowhead drawn by the \arrow macro.
The default value is 3pt.

\axisheadlen

This TEX dimension stores the length of the arrowhead drawn by the \axes, \xaxis
and \yaxis macros, and by the macros \axis and \doaxes when applied to the parameters
x and y. The first name is for compatability; both reference the same TEX dimension. The
default value is 5pt.

38

\sideheadlen

This TEX dimension stores the length of the arrowhead drawn by the \axis and
\doaxes macros when applied to 1, b, r or t. The default value is Opt.

\headshape{(hdwdr)}{(hdten)}{(hfilled)}

Establishes the shape of the arrowhead drawn by the \arrow and \axes macros. The
value of (hdwdr) is the ratio of the width of the arrowhead to its length; (hdten) is the
tension of the Bézier curves; and (hfilled) is a METAFONT boolean value indicating whether
the arrowheads are to be filled (if true) or open. The default values are 1, 1, false,
respectively. The (hdwdr), (hdten) and (hfilled) values are stored by METAFONT. Setting
(hdten) to “infinity” will make the sides of the arrowheads straight lines.

\dashlen, \dashspace

These TEX dimensions store, respectively, the length of dashes and the length of spaces
between dashes, for lines drawn by the \dashed macro. The \dashed macro may adjust
the dashes and the spaces between by as much as % of their value, where n is the number of
spaces appearing in the curve, in order not to have partial dashes at the ends. The default
values are both 4pt. The dashes will actually be longer (and the spaces shorter) by the
thickness of the pen used when they are drawn.

\dashlineset, \dotlineset

These macros provide convenient standard settings for the \dashlen and \dashspace
dimensions. The macro \dashlineset sets both values to 4pt; the macro \dotlineset
sets \dashlen to 1pt and \dashspace to 2pt.

\hashlen

This TEX dimension stores the length of the axis hash marks drawn by the \xmarks
and \ymarks macros. The default value is 4pt.

\shadespace

This TEX dimension establishes the spacing between dots drawn by the \shade macro.
The default value is 1pt.

\darkershade, \1lightershade

These macros both multiply the \shadespace dimension by constant factors, 5/6 and
6/5 respectively, to provide convenient standard settings for several levels of shading.

\polkadotspace

This TEX dimension establishes the spacing between the centers of the dots used in
the \polkadot macro. The default is 10pt.

39

\dotsize, \dotspace
These TEX dimensions establishes the size and spacing between the centers of the dots
used in the \dotted macro. The defaults are 0.5pt and 3pt.

\symbolspace

Similar to \dotspace, this TEX dimension established the space between symbols
placed by the macro \plot{{symbol)}.... Its default is 5pt.

\hatchspace

This TEX dimension establishes the spacing between lines drawn by the \hatch macro.
The default value is 3pt.

\tlabelsep{(separation)}

This macro establishes the separation between a label and its nominal position.
It affects text written with any of the commands \tlabel, \tlabels, \axislabels or
\plottext. It also sets the separation between the text and the curve defined by the
commands \tlabelrect, \tlabeloval or \tlabelellipse. The default is Opt.

\mfpdataperline

When MFPIC is reading data from files and writing it to the output file, this macro
stores the maximum number of points that will be written on a single line. Its default is
defined by \def\mfpdataperline{5 }.

\mfpicheight, \mfpicwidth

These TEX dimensions store the height and width of the figure created by the most
recently completed mfpic environment. This might perhaps be of interest to hackers or to
aid in precise positioning of the graphics. They are meant to be read-only: the \endmfpic
command globally sets them equal to the height and width of the picture. But MFPIC does
not otherwise make any use of them.

11. For PoweEr USERS ONLY.

\nfsrc{(metafont code)}

Writes the (metafont code) directly to the METAFONT file, using a TEX \write com-
mand. Line breaks within (metafont code) are preserved. Almost all the MFPIC drawing
macros invoke \mfsrc. Because of the way TEX reads and processes macro arguments,
not all drawing macros preserve line breaks (nor do they all need to). However, the ones
that operate on long lists of pair or numeric data (for example, \point, \curve, etc.), do
preserve line breaks in that data.

Using \mfsrc can have some rather bizarre consequences, though, so using it is not
recommended to the unwary. It is, however, currently the only way to make use of META-
FONT’s equation solving ability. Here’s an oversimplified example:

40

\mfpic[20]{-0.5}{1.53{0}{1.5}

\mfsrc{z1=(0,0); z2-2z3=(1,2); z2+2z3=(1,-1);} % z2=(1,1), z3=(0,-1)
\arc[t]{z1,z2,z3}

\endmfpic

Check out the sample forfun.tex for more realistic examples.

\noship

This modifier macro turns off character shipping (by METAFONT to the TFM and GF
files, or by METAPOST to appropriate EPS output file) for the duration of the innermost
enclosing group (e.g., for the mfpic environment). This is useful if all one wishes to do in
the current mfpic environment is to make tiles (see below).

\patharr{(pv)}.. \endpatharr

This pair of macros, acting as an environment, accumulate all enclosing paths, in
order, into a path array named (pv). Any path in the array can be accessed by means of
\mfobj. For example, after

\patharr{pa}
\rect{(0,0),(1,1)}
\circle{(.5,.5), .5}

\endpatharr

Then \mfobj{pal} refers to the rectangle and \mfobj{pa2} refers to the circle.
Note: In IATEX, this pair of macros can be used in the form of a IATEX-style environ-
ment called patharr —as in \begin{patharr}.. \end{patharr}.

\tile{(tilename), (unit),(wd), (ht),{clip)}

\endtile

In this environment, all drawing commands contribute to a tile. A tile is a rectangular
picture which may be used to fill the interior of closed paths. The units of drawing are given
by (unit), which should be a dimension (like 1pt or 2in). The tile’s horizontal dimensions
are 0 to {(wd) - (unit) and its vertical dimensions 0 to (ht)-(unit), so (wd) and (ht) should be
pure numbers. If (clip) is true then all drawing is clipped to be within the tile’s boundary.

By using this macro, you can design your own fill patterns (to use them, see the \tess
macro below), but please take some care with the aesthetics!

\tess{(tilename)}. ..

Tile the interior of each closed path with a tessellation comprised of tiles of the type
specified by (tilename). There is no default (tilename); you must make all your own tiles.
Tiling an open curve is technically an error, but the METAFONT code responds by drawing
the path and not doing any tiling.

Tiling large regions with complicated tiles can exceed the capacity of some versions
of METAPOST. There is less of a problem with METAFONT. This is not because METAFONT

41

has greater capacity, but because of the natural difference between bitmaps and vector
graphics (i.e., POSTSCRIPT).

In METAPOST, the tiles are copied with whatever color they are given when they are
defined. They can be multicolored.

\mftitle{(title)}
Write the string (title) to the METAFONT file, and use it as a METAFONT message. (See
The METAFONTbook, chapter 22: Strings, page 187, for two uses of this.)

\tmtitle{(title)}
Write the text (title) to the TEX document, and to the log file, and use it implicitly
in \mftitle.

\newfdim{(fdim)}

Create a new global font dimension, named (fdim), which can be used almost like an
ordinary TEX dimension. One exception is that the TEX commands \advance, \multiply
and \divide cannot be applied directly to font dimensions (nor INTEX’s \addtolength);
however, the font dimension can be copied to a temporary TEX dimension register, which
can then be manipulated and copied back (using \setlength in KTEX, if desired). An-
other exception is that changes to a font dimension are global in scope. Also beware that
\newfdim uses font dimensions from a single font, the dummy font, which most TEX systems
ought to have. (You'll know if yours doesn’t, because MFPIC will fail upon loading!) Also,
implementations of TEX differ in the number of font dimensions allowed per font. Hopefully,
MFPIC won’t exceed your local TEX’s limit. All of MFPIC’s basic dimension parameters are
font dimensions. We have lied slightly when we called them “TEX dimensions”.

\setmfpicgraphic{(filename)}

This is the command that is invoked to place the graphic created. See mppicdoc.tex
for a discussion of its use and its default definition. It is a user-level macro so that it can
be redefined in unusual cases. It operates on the output of the following macro:

\setfilename{(file)}{{num)?}

MFPIC’s figure inclusion code ultimately executes \setmfpicgraphic on the result of
applying \setfilename to two arguments: the file name specified in the \opengraphsfile
command and the number of the current picture. Normally \setfilename just puts them
together with the “.” separator (because that is the way METAPOST names its output), but
this can be redefined if the METAPOST output undergoes further processing or conversion to
another format in which the name is changed. Any redefinition of \setfilename must come
before \opengraphsfile because that command tests for the existence of the first figure.
After any redefinition, \setfilename must be a macro with two arguments that creates the
actual filename from the above two parts. It should also be completely expandable, which
can be tested by issuing the command \message{***\setfilename{filenamel}{1}**x*}.
What you should see on the terminal between the triple asterisks is only the filename, and
no unexpanded TEX commands. See mppicdoc.tex for a possibly instructive example.

42

\getmfpicoffset{(filename)}

This command is automatically invoked after \setmfpicgraphic to store the off-
set of the lower left corner of the figure in the macros \mfpicllx and \mfpiclly. If
\setmfpicgraphic is redefined then this may also have to be redefined. Typically, defin-
ing it to be empty (i.e., \def\getmfpicoffset{}) will work if either both or neither of
the options mplabels and truebbox are in effect.

11.1 For Hackers Only.

MFPIC employs a modified version of A TEX’s \@ifnextchar that not only skips over spaces
when seeking the next character, but also skips over \relax or tokens that have been \let
equal to it. This is because, in contexts where we try to preserve lines, we make the end-of-
line character active and set it equal to \relax. Since it is hard to predict in what context
a macro will be used, this gives code like

\function
[s1.2]1{0,2, .1}3{ x*x2 }

the same behavior in both. One consequence is that putting \relax to stop a command
from seeing a “[” as the start of an optional argument will not work for MFPIC commands.
The same holds for the “*” in those few commands that have a star-form, and also for
other commands that look ahead (\tlabel looks for a “(” starting off the location, and
macros that operate on lists of data look ahead for “\datafile”). This may all be moot,
because I can’t think of an MFPIC command that doesn’t have mandatory argument(s)
following the look-ahead location. If a “\relax” appeared in such a place, and it was not
skipped, an error would result from reading it as the next argument.

V. Acknowledgements.

Tom would like to thank all of the people at Dartmouth as well as out in the network world
for testing MFPIC and sending him back comments. He would particularly like to thank:

Geoffrey Tobin for his many suggestions, especially about cleaning up the META-
FONT code, enforcing dimensions, fixing the dotted line computations, and speeding up
the shading routines (through this process, Geoffrey and Tom managed to teach each
other many of the subtleties of METAFONT), and for keeping track of MFPIC for nearly a
year while Tom finished his thesis;

Bryan Green for his many suggestions, some of which (including his rewriting the
\tcaption macro) ultimately led to the current version’s ability to put graphs in-line or
side-by-side; and

Uwe Bonnes and Jaromir Kuben, who worked out rewrites of MFPIC during Tom’s
working hiatus and who each contributed several valuable ideas.

Some credit also belongs to Anthony Stark, whose work on a FIG to METAFONT
converter has had a serious impact on the development of many of MFPIC’s capabilities.

Finally, Tom would like to thank Alan Vlach, the other TEXnician at Berry College,
for helping him decide on the format of many of the macros, and for helping with testing.

43

Dan Luecking would like to echo Tom’s thanks to all of the above, especially Geoffrey
Tobin and Jaromir Kuben. And to add the names Taco Hoekwater, for comments, advice
and suggestions, and Zaimi Sami Alex for suggestions and interest shown.

But mostly, he’d like to thank Tom Leathrum for starting it all.

VI. Changes History.

See the file changes.tex for a somewhat sporadic and rambling history of changes to
MFPIC. See the file whats.new for a list of any known problems.

VII. Appendices

1. SUMMARY OF OPTIONS

Unless otherwise stated, any of the command forms will be local to the current mfpic
environment if used inside. Otherwise it will affect all later environments.

OPTION: COMMAND FORM(S): RESTRICTIONS:
metapost \usemetapost Command must come before
\opengraphsfile. Incompatible with
metafont option.
metafont \usemetafont The default. Command must come
before \opengraphsfile. Incompatible
with metapost option.
mplabels \usemplabels, Requires metapost, should be used with
\nomplabels truebbox. If command is used inside an
mfpic environment, it should come
before any \tlabel commands.
truebbox \usetruebbox, Has no effect without metapost; should
\notruebbox be used with mplabels. Command
should not be used inside any mfpic
environment because it is needed by the
start-up code of \mfpic.
clip \clipmfpic, No restrictions.
\noclipmfpic

centeredcaptions

debug

draft
final
nowrite

\usecenteredcaptions,
\nocenteredcaptions

\mfpicdebugtrue,
\mfpicdebugfalse

\mfpicdraft
\mfpicfinal
\mfpicnowrite

44

If command is used inside an mfpic
environment, it should come before
\tcaption.

To turn on debugging while mfpic.tex
is loading, issue \def\mfpicdebug{}.

Should not be used together. Command
forms should come before
\opengraphsfile

2. PLOTTING STYLES FOR \plotdata

When \plotdata passes from one curve to the next, it increments a counter and uses
that counter to select a dashpattern, color, or symbol. It uses predefined dashpattern
names dashtypeO through dashtypeb, or predefined color names colortype0O through
colortype7, or predefined symbols pointtype0 through pointtype8. Here follows a de-
scription of each of these variables.

Under \dashedlines, we have the following dashpatterns:

NAME PATTERN MEANING
dashtypeO Opt solid line
dashtypel 3pt,4pt dashes
dashtype?2 Opt,4pt dots
dashtype3 Opt,4pt,3pt,4pt dot-dash
dashtype4 Opt,4pt,3pt,4pt,0pt,4pt dot-dash-dot
dashtypeb Opt,4pt,3pt,4pt,3pt,4pt dot-dash-dash

Under \coloredlines, we have the following colors. Except for black and red, each
color is altered as indicated. This is an attempt to make the colors more equal in visibility
against a white background. (The success of this attempt varies greatly with the output

or display device.)

NAME CoLOR (R,G,B)
colortype0 black (0,0,0)
colortypel red (1,0,0)
colortype?2 blue (.2,.2,1)
colortype3 orange (1,.66,0)
colortype4 green (0,.8,0)
colortypeb magenta (.85,0,.85)
colortype6 cyan (0,.85,.85)
colortype7? yellow (.85,.85,0)

Under \pointedlines and \datapointsonly, the following symbols are used. Inter-
nally each is referred to by the numeric name, but they are identical to the more descriptive
name. Syntactically, all are METAFONT path variables.

NAME DESCRIPTION
pointtypeO Star
pointtypel Triangle
pointtype2 SolidCircle
pointtype3 Plus
pointtype4 Square
pointtypeb SolidDiamond
pointtypeb Cross
pointtype7 Circle
pointtype8 SolidTriangle

45

3. INDEX OF COMMANDS, OPTIONS AND PARAMETERS

A

\applyT, 34
\arc, 14
\arrow, 21
Asterisk, 9
\axes, 10
\axis, 10
\axisheadlen, 38
\axislabels, 31
\axismargin, 11
\axismarks, 11

B

background, 9
\backgroundcolor, 17
\barchart, 15
\bclosed, 19
\bmarks, 11
\boost, 35
\btwnfcn, 26

C

\cbclosed, 19
centeredcaptions, 5
\chartbar, 15
Circle, 9
\circle, 13

clip, 5
\clipmfpic, 5, 6
\closegraphsfile, 7
cmyk(c,m,y,k), 17
\coloredlines, 28
\connect, 20
\coords, 34
Cross, 9
\curve, 13
\cyclic, 14

46

D

\darkershade, 39
\dashed, 20
\dashedlines, 28
\dashlen, 39
\dashlineset, 39
\dashpattern, 21
\datafile, 26
\datapointsonly, 28
debug, 5

Diamond, 9
\doaxes, 10
\dotlineset, 39
\dotsize, 40
\dotspace, 40
\dotted, 20

draft, 6

\draw, 20
drawcolor, 9, 20, 29
\drawcolor, 17
\drawpen, 38

E

\ellipse, 13
\endconnect, 20
\endcoords, 34
\endmfpframe, 34
\endmfpic, 7
\endpatharr, 41
\endtile, 41
\everytlabel, 30

F

\fcncurve, 14
\fdef, 24
fillcolor, 9, 22, 23
\fillcolor, 17
final, 6
\function, 25

G \mfpicheight, 40

\gclear, 22 \mfpicnowrite, 6
\gclip, 22 \mfpicnumber, 8
\gendashed, 21 \mfpicunit, 38
\getmfpicoffset, 43 \mfpicwidth, 40
\gfill, 22 \mfpigdebugfalse, 6
gray(g), 17 \mfplinestyle, 28
\grid, 13 \mfplinetype, 28
\gridlines, 13 \nfpverbtex, 31
\gridpoints, 13 \mfsrc, 40
\mftitle, 42
H \mirror, 35
\hashlen, 39 mplabels, 4
\hatch, 23 N
hatchcolor, 9, 23
\hatchcolor, 17 named ((name)), 18
\hatchspace, 40 \newfdim, 42
\hatchwd, 38 \newsavepic, 33
headcolor, 9, 10, 21 \nocenteredcaptions, 5, 6
\headcolor, 17 \noclipmfpic, 5, 6
\headlen, 38 \nomplabels, 4, 6
\headshape, 39 \noship, 41
\notruebbox, 5, 6
L nowrite, 6
\lattice, 13
\lclosed, 19 o
\lhatch, 23 \opengraphsfile, 7
\lightershade, 39
\lines, 10 P
\1lmarks, 11 \parafcn, 25
\patharr, 41
M \pen, 38
metapost, 4 \penwd, 38
\mfobj, 35 \piechart, 16
\nfpdatacomment, 27 \piewedge, 16
\mfpdataperline, 40 \plot, 20
\mfpdefinecolor, 18 \plotdata, 28
\mfpframe, 34 \plotnodes, 21
\mfpframed, 34 \plotsymbol, 9
\mfpic, 7 \plottext, 31
\mfpicdebugfalse, 5 \plr, 16
\nfpicdebugtrue, 5, 6 \plrfcn, 25
\mfpicdraft, 6 \plrgrid, 13
\mfpicfinal, 6 \plrpatch, 13

47

\plrregion, 26
Plus, 9

\point, 9
\pointdef, 9
\pointedlines, 28
\pointfilltrue, 38
\pointsize, 38
\polkadot, 22
\polkadotspace, 39
\polkadotwd, 38
\polygon, 10
\polyline, 10

R

\rect, 10
\reflectabout, 35
\reflectpath, 36
\reverse, 20
RGB(R,G,B), 17
\rhatch, 23
\rmarks, 11
\rotate, 34
\rotatearound, 35
\rotatepath, 36

S
\savepic, 33
\scale, 35
\scalepath, 36
\sclosed, 19
\sector, 15

\setallaxismargins, 11
\setallbordermarks, 12

\setaxismargins, 11
\setaxismarks, 12
\setbordermarks, 12
\setfilename, 42

\setmfpicgraphic, 42

\setrender, 23
\setxmarks, 12
\setymarks, 12
\shade, 22
\shadespace, 39
\shadewd, 38

\shift, 35
\shiftpath, 36
\sideheadlen, 39
\slantpath, 36
\smoothdata, 26
SolidCircle, 9
SolidDiamond, 9
SolidSquare, 9
SolidStar, 9
SolidTriangle, 9
Square, 9
Star, 9
\store, 35
\symbolspace, 40

T

\tcaption, 32
\tess, 41
\thatch, 23
\tile, 41
\tlabel, 29
\tlabelcircle, 33
tlabelcolor, 9
\tlabelcolor, 17
\tlabelellipse, 33
\tlabeljustify, 30
\tlabeloffset, 30
\tlabeloval, 32
\tlabelrect, 32
\tlabels, 29
\tlabelsep, 30, 40
\tmarks, 11
\tmtitle, 42
Triangle, 9
truebbox, 5
\turn, 35
\turtle, 15

U
\uclosed, 19

\unsmoothdata, 26
\usecenteredcaptions, 5, 6

\usemetafont, 6

\usemetapost, 4, 6
\usemplabels, 4, 6

\usepic, 33

\usetruebbox, 5, 6

\using, 27

X

\xaxis, 10
\xhatch, 23
\xmarks, 11
\xscale, 35

49

\xscalepath, 36
\xslant, 35
\xslantpath, 36
\xyswap, 35
\xyswappath, 36

Y
\yaxis, 10
\ymarks, 11
\yscale, 35
\yscalepath, 36
\yslant, 35
\yslantpath, 36

Z

\zscale, 35
\zslant, 35

