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Abstract. In [8] we recently proved that in our model of quantum
gravity the solutions to the quantized version of the full Einstein equa-
tions or to the Wheeler-DeWitt equation could be expressed as prod-
ucts of spatial and temporal eigenfunctions, or eigendistributions, of
self-adjoint operators acting in corresponding separable Hilbert spaces.
Moreover, near the big bang singularity we derived sharp asymptotic
estimates for the temporal eigenfunctions. In this paper we show that,
by using these estimates, there exists a complete sequence of unitarily
equivalent eigenfunctions which can be extended past the singularity by
even or odd mirroring as sufficiently smooth functions such that the ex-
tended functions are solutions of the appropriately extended equations
valid in R in the classical sense.
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1. Introduction

A unified quantum theory incorporating the four fundamental forces of
nature is one of the major open problems in physics. The Standard Model
combines electromagnetism, the strong force and the weak force, but ignores
gravity. The quantization of gravity is therefore a necessary first step to
achieve a unified quantum theory.
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General relativity is a Lagrangian theory, i.e., the Einstein equations are
derived as the Euler-Lagrange equation of the Einstein-Hilbert functional

(1.1)
∫
N

(R̄− 2Λ),

where N = Nn+1, n ≥ 3, is a globally hyperbolic Lorentzian manifold,
R̄ the scalar curvature and Λ a cosmological constant. We also omitted
the integration density in the integral. In order to apply a Hamiltonian
description of general relativity, one usually defines a time function x0 and
considers the foliation of N given by the slices

(1.2) M(t) = {x0 = t}.
We may, without loss of generality, assume that the spacetime metric splits

(1.3) ds̄2 = −w2(dx0)2 + gij(x
0, x)dxidxj ,

cf. [4, Theorem 3.2]. Then, the Einstein equations also split into a tangential
part

(1.4) Gij + Λgij = 0

and a normal part

(1.5) Gαβν
ανβ − Λ = 0,

where the naming refers to the given foliation. For the tangential Einstein
equations one can define equivalent Hamilton equations due to the ground-
breaking paper by Arnowitt, Deser and Misner [1]. The normal Einstein
equations can be expressed by the so-called Hamilton condition

(1.6) H = 0,

where H is the Hamiltonian used in defining the Hamilton equations. In the
canonical quantization of gravity the Hamiltonian is transformed to a partial
differential operator of hyperbolic type Ĥ and the possible quantum solutions
of gravity are supposed to satisfy the so-called Wheeler-DeWitt equation

(1.7) Ĥu = 0

in an appropriate setting, i.e., only the Hamilton condition (1.6) has been
quantized, or equivalently, the normal Einstein equation, while the tangential
Einstein equations have been ignored.

In [4] we solved the equation (1.7) in a fiber bundle E with base space S0,

(1.8) S0 = {x0 = 0} ≡M(0),

and fibers F (x), x ∈ S0,

(1.9) F (x) ⊂ T 0,2
x (S0),

the elements of which are the positive definite symmetric tensors of order two,
the Riemannian metrics in S0. The hyperbolic operator Ĥ is then expressed
in the form

(1.10) Ĥ = −∆− (R− 2Λ)φ,
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where ∆ is the Laplacian of the DeWitt metric given in the fibers, R the
scalar curvature of the metrics gij(x) ∈ F (x), and φ is defined by

(1.11) φ2 =
det gij
det ρij

,

where ρij is a fixed metric in S0 such that instead of densities we are consid-
ering functions.

The Wheeler-DeWitt equation only represents the quantization of the nor-
mal Einstein equations and ignores the tangential Einstein equations. In
order to quantize the full Einstein equations we incorporated the Hamilton
condition into the right-hand side of the Hamilton equations to obtain a
scalar evolution equation such that the Hamilton equations and this scalar
evolution are equivalent to the full Einstein equations, cf. [8, Theorem 1.3.4,
p. 12]. For the quantization of this evolution equation we defined the base
space of the fiber bundle E to be the Cauchy hypersurface (S0, σ̄ij) of the
quantized spacetime, where σ̄ij is the induced metric. We also choose the
metric ρij in (1.11) to be equal to σ̄ij . The result of this quantization was a
hyperbolic equation in E.

The fibers F (x) over x ∈ S0 are Riemannian metrics gij(x) if external fields
are excluded. In an appropriate local trivialization we obtained a coordinate
system (ξa), 0 ≤ a ≤ m,

m =
(n− 1)(n+ 2)

2
,

n = dimS0, such that the metrics gij can be written

gij = t
4
nσij ,

where
0 < t = ξ0 <∞

and the metric σij belongs to the hypersurface or subbundle

M = {t = 1} ⊂ E.

The solutions u then depend on the variables (t, σij , x), where σij does not
depend on t and t not on x. We refer to t as quantum time and x, σij as
spatial variables.

In the papers [5, 7] we could express u as a product of eigenfunctions

(1.12) u = wv̂v,

where w = w(t) is the temporal eigenfunction, v̂ = v̂(σij(x)) can be identified
with an eigenfunction of the Laplacian of the symmetric space

(1.13) X = SL(n,R)/SO(n)

such that

(1.14) v̂(σ̄ij(x)) = 1 ∀x ∈ S0,

where σ̄ij is the fixed induced metric of S0. The eigenfunctions v̂ represent
the elementary gravitons corresponding to the degrees of freedom in choosing



4 CLAUS GERHARDT

the entries of Riemannian metrics with determinants equal to one. These
are all the degrees of freedom available because of the coordinate system
invariance: For any smooth Riemannian metric there exists an atlas such
that the determinant of the metric is equal to one, cf. [8, Lemma 3.2.1, p. 74].
The function v is an eigenfunction of an essentially self-adjoint differential
operator in S0.

At first, the temporal eigenfunctions w were only the solutions of an ODE.
Later, in [7, Section 5] we proved that they were the eigenfunctions of an
essentially self-adjoint differential operator in R+, provided n is sufficiently
large and Λ < 0 and the Cauchy hypersurface (S0, σ̄ij) is either a space of
constant curvature like Rn and Hn or a metric product of the form

(1.15) S0 = Rn1 ×M0,

where M0 is a smooth, compact and connected manifold of dimension n−n1,
(1.16) dimM0 = n− n1 = n0,

and where

(1.17) σ̄ = δ ⊗ g

is a metric product; δ is the standard Euclidean metric and g a Riemannian
metric in M0, cf. [7, Section 5].

But in [8, Chapter 4.2] we were able to prove this property for arbitrary
n ≥ 3 and Λ < 0 and, in case n = 3, even for Λ > 0 by introducing an
additional scalar fields map in the action functional, i.e., a map

(1.18) Φ : N → Rk,

where N = I × S0 is the original spacetime which is to be quantized. Let
(ḡαβ) be the Lorentzian metric in N , the scalar field Lagrangian is defined
by

(1.19) LS = −1

2
ḡαβγabΦ

a
αΦ

b
β

√
|ḡ|,

i.e., without a zero order term, (γab) is the Euclidean metric in Rk.
The temporal eigenfunctions w then have to satisfy the ODE

(1.20)

n

16(n− 1)
t−(m+k) ∂

∂t

(
t(m+k) ∂w

∂t

)
+ t−2(|λ|2 + ρ2 − 1

2
|θ0|2)w

+ t2−
4
n {(n− 1)|ξ|2 + µ̄l}w + (n− 2)t2Λw = 0

in 0 < t <∞, where

(1.21) |λ|2 + ρ2

is an eigenvalue of an elementary graviton,

(1.22) |θ0|2,
an eigenvalue of −∆Rk and

(1.23) (n− 1)|ξ|2 + µ̄l
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with ξ ∈ Rn1 an eigenvalue of the spatial self-adjoint operator acting in (1.15).
Using the abbreviations

(1.24) µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2 − 1

2
|θ0|2),

(1.25) m1 =
16(n− 1)

n
{(n− 1)|ξ|2 + µ̄l}

and

(1.26) m2 =
16(n− 1)(n− 2)

n

we can rewrite the equation (1.20) in the form

(1.27) t−(m+k) ∂

∂t

(
t(m+k) ∂w

∂t

)
+ t−2µ0w + t2−

4
nm1w + t2m2Λw = 0.

This equation can be treated as an eigenvalue equation provided

(1.28) µ̄ = µ0 −
(m+ k − 1)2

4
< 0.

Let us recall that

(1.29) m =
(n− 1)(n+ 2)

2
.

and

(1.30) ρ2 =
(n− 1)2n

12
.

There are two ways how to treat (1.27) as an eigenvalue equation: First,
the cosmological constant Λ, or better −Λ can be looked at as an implicit
eigenvalue, or secondly, if we consider Λ < 0 to be fixed, we could try to solve
the eigenvalue problem

(1.31) −t−(m+k) ∂

∂t

(
t(m+k) ∂w

∂t

)
− t−2µ0w − t2m2Λw = λt2−

4
nw

in (0,∞), where λ > 0 is a yet unknown eigenvalue such that λ would be
equal to the spatial eigenvalue, i.e.,

(1.32) λ = m1 =
16(n− 1)

n
{(n− 1)|ξ|2 + µ̄l}.

In this case the corresponding eigenfunction w would be a solution of (1.27),
i.e., it would be a temporal eigenfunction of our model of quantum gravity.
We solved the implicit as well as the explicit eigenvalue problem in [8, Chapter
4] by choosing k in (1.28) sufficiently large such that µ̄ < 0.

Since µ0 is in general positive, unless we choose |θ0| large which is not
always possible or desirable, we considered the orthogonally equivalent func-
tion

(1.33) u = t
m+k−1

2 w
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which satisfies the equation

(1.34) −t−1 ∂

∂t

(
t
∂u

∂t

)
− t−2µ̄u+ t2m2

2u = λt2−
4
nu,

where

(1.35) µ̄ = µ0 −
(
m+ k − 1

2

)2

which is negative if k ∈ N is large enough.
In [8, Theorem 3.4.9, p. 86] we proved

Theorem 1.1. Let u ∈ H2 satisfy the equation (1.34) which we express
in the form

(1.36) A1u = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u+ t2m2

2u = λt2−
4
nu,

where the constants µ,m2 and λ are strictly positive. Since µ is especially
important, let us emphasize that

(1.37) µ2 = −µ̄ =
(m+ k − 1)2

4
− µ0

and µ0 > 0. Then, there exists 0 < t0 < 1 and positive constants p, c1, c2
such that u does not vanish in the interval (0, t0] and can be estimates by

(1.38) c1t
p ≤ |u(t)| ≤ c2t

µ ∀ t ∈ (0, t0],

where p,

(1.39) µ < p <
m+ k − 1

2
,

is arbitrary but fixed.

Here, we adapted the wording slightly to reflect the present assumptions,
cf. [8, Theorem 4.2.4, p. 118].

If we combine gravity with the forces of the Standard Model then we cannot
quantize the full Einstein equations but only the normal Einstein equation,
i.e., the Hamilton condition. As a result we obtain the Wheeler-DeWitt
equation which again can be solved by a product of spatial and temporal
eigenfunctions or eigendistributions. in this case the temporal eigenfunction
equation has the form, after using the same ansatz as before,

(1.40) −t−1 ∂

∂t

(
t
∂u

∂t

)
− t−2µ̄u+ t2m2

2u = λt−
2
3u,

where

(1.41) µ̄ = µ0 −
(
m+ k − 1

2

)2

.
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Comparing this equation with equation (1.34) there are two differences: First,
the term µ0 does not depend on |θ0|

(1.42) µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2)

since we had to choose θ0 = 0, and secondly, the exponent of t on the right-
side is − 2

3 . The first difference implies that only by requiring k to be large
we could enforce µ̄ < 0 and the negative exponent that the estimate (1.38)
is slightly worse, but still good enough for our purpose. Indeed, we proved
in [8, Theorem 5.5.5, p. 145]

Theorem 1.2. Let u ∈ H2 satisfy the equation

(1.43) A1u = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u+ t2m2

2u = λt−
2
3u,

where the constants µ,m2 and λ are strictly positive. Since µ is especially
important, let us emphasize that

(1.44) µ2 = −µ̄ =
(m+ k − 1)2

4
− µ0

and µ0 > 0. Then, for any small ϵ0 > 0, there exist 0 < t0 < 1 and positive
constants p, c1, c2 such that u does not vanish in the interval (0, t0] and can
be estimated by

(1.45) c1t
p ≤ |u(t)| ≤ c2t

µ−ϵ0 ∀ t ∈ (0, t0],

where p,

(1.46) µ < p <
m+ k − 1

2
,

is arbitrary but fixed.

The eigenvalue equations (1.36) and (1.43) in the Hilbert space H2 can
both be solved by complete sequences of mutually orthogonal eigenfunctions
ui with corresponding positive eigenvalues λi of multiplicity one satisfying

(1.47) 0 < λ0 < λ1 < λ2 < · · ·

and

(1.48) lim
i→∞

λi = ∞.

For a proof see [8, Theorem 3.4.5, p. 84] and Theorem 3.10 on page 21,
where we shall prove a corresponding result for a more general right-hand
side which includes our two cases.

As a corollary, which we like to formulate as a theorem, we deduce:

Theorem 1.3. Let wi ∈ Ĥ2 be related to a function ui by

(1.49) wi = t−
m+k−1

2 ui
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and assume that ui ∈ H2 satisfies an equation of the form

(1.50) A1u = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u+ t2m2

2u = λt−
2
3u,

where the constants µ,m2 and λ are strictly positive and µ is defined by

(1.51) µ2 = −µ̄ =
(m+ k − 1)2

4
− µ0

and µ0 > 0. Then, for any small ϵ0 > 0 there exists 0 < t0 < 1 and positive
constants p, c1, c2, such that wi does not vanish in the interval (0, t0] and can
be estimates by

(1.52) c1t
p−m+k−1

2 ≤ |wi(t)| ≤ c2t
µ−ϵ0−m+k−1

2 ∀ t ∈ (0, t0],

where p,

(1.53) µ < p <
m+ k − 1

2
,

is arbitrary but fixed. Hence, we conclude

(1.54) lim
t→0

|wi(t)| = ∞.

The eigenfunctions wi in the previous theorem are the solutions of the
original temporal eigenfunctions equation and they are the eigenfunctions of
a self-adjoint operator in Hilbert space. The ui are the unitarily equivalent
eigenfunctions of a unitarily equivalent self-adjoint operator. In Section 3 on
page 13 we shall show that the unitarily equivalent eigenfunctions

(1.55) ũi = t
1
2ui

can be extended past the singularity by an even reflection as sufficiently
smooth functions provided the coefficient µ2 in (1.44) is large enough. More
precisely, we shall prove:

Theorem 1.4. Let 2 ≤ m0 ∈ N be arbitrary and assume

(1.56) µ+
1

2
> m0,

then

(1.57) ũi ∈ Cm0([0, t0]) ∧ ũ
(m0)
i (0) = 0 = lim

t→0
ũ
(m0)
i (t)

as well as

(1.58) lim
t→0

ũ
(k)
i (t)

tm0−k
= 0 ∀ 1 ≤ k ≤ m0, k ∈ N,

where ũ(k)i denotes the k-th derivative of ũi. These properties are also valid
for the extended functions.

Furthermore, we shall prove
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Corollary 1.5. If the assumption of the preceding theorem is satisfied
then the extended solutions ũi also satisfy the extended equations

(1.59) −¨̃ui + t−2µ̃2ũi + t2m2
2ũi = λi|t|qũ

in R, where we have to replace tq by |t|q for obvious reasons. Let us emphasize
that the lower order coefficients of the ODE exhibit a singularity in t = 0 but
that both sides of the equation are continuous in the interval (−∞,∞) and
vanish in t = 0.

Here, the exponent q is any real number satisfying

(1.60) −2 < q < 2.

2. The equations of quantum gravity

The tangential Einstein equations are equivalent to the Hamilton equations
and the normal Einstein equation is equivalent to the Hamilton condition. By
quantizing the Hamilton condition we obtain the Wheeler-DeWitt equation
while ignoring the tangential Einstein equations. In order to quantize the full
Einstein equations we consider the second Hamilton equations

(2.1) π̇ij = − δH

δgij
,

where

(2.2) H = H0 +H1

is the combined Hamilton function of the gravitational Hamiltonian H0 and
the scalar field map Hamiltonian H1. Thus, we infer

(2.3) gij π̇
ij = −gij

δH

δgij
= −gij

δ(H0 +H1)

δgij
.

On the right-hand side of this evolution equation we then implement the
Hamilton condition H = 0 in the form

(2.4) pH = 0,

where 0 ̸= p ∈ R is an arbitrary real number to be determined later. After the
quantization of the modified evolution equation (2.3) we obtain the hyperbolic
equation

(2.5)

(
n

2
− 2− p){− n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

+ t−2∆Mu+
1

2
t−2∆Rku} − (n− 1)t2−

4
n ∆̃σu

− pt2−
4
nRσu+ 2pΛu+ t−2∆Rku+ pC1u = 0.

The preceding equation is evaluated at (x, t, σij , θ
a), where x ∈ S0, t ∈ R+,

σij ∈ M is the induced metric of a Cauchy hypersurface of the quantized
globally hyperbolic spacetime and θ = θ(x) is a coordinate in the fiber Rk.
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Let us recall that after quantization the components Φa of the scalar field are
equal to the coordinates θa in Rk such that

(2.6) Φa(x) = θa(x) ∀x ∈ S0

and

(2.7) C1 =
1

2
t2−

4
nσijγabθ

a
i θ

b
j .

Since we only introduced the scalar field in order to prove that the temporal
"eigenfunctions" are indeed eigenfunctions of a self-adjoint operator with a
pure point spectrum we can simplify the left-hand side of (2.5) by choosing

(2.8) θa(x) = 1 ∀x ∈ S0, ∀ 1 ≤ a ≤ k.

Hence, we have to solve the equation

(2.9)

(
n

2
− 2− p){− n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

+ t−2∆Mu+
1

2
t−2∆Rku} − (n− 1)t2−

4
n ∆̃σu

− pt2−
4
nRσu+ 2pt2Λu+ t−2∆Rku = 0,

where u depends on (x, t, σij , θ
a). The parameter p ∈ R, p ̸= 0, is not yet

specified.
As mentioned before the solution u should be a product of spatial and

temporal eigenfunctions. In order to ensure that the temporal eigenfunctions
are eigenfunctions of a self-adjoint operator we have to distinguish three cases:

Case 1 : Λ < 0 and n ≥ 3.
Then we choose

(2.10) p =
n

2
− 1

and consider the equation

(2.11)

n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

− t−2∆Mu+
1

2
t−2∆Rku− (n− 1)t2−

4
n ∆̃σu

− (
n

2
− 1)t2−

4
nRσu+ (n− 2)t2Λu = 0.

Case 2 : Λ > 0 and n ≥ 5.
Then, we choose

(2.12) p =
n

2
− 2− 1

4
> 0
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and consider the equation

(2.13)

− 1

4

n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

+
1

4
t−2∆Mu+

9

8
t−2∆Rku− (n− 1)t2−

4
n ∆̃σu

− (
n

2
− 9

4
)t2−

4
nRσu+ (n− 9

2
)t2Λu = 0.

Case 3 : Λ > 0 and n = 3.
Then we choose

(2.14) p = −1

4

yielding

(2.15)

1

4

n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

− 1

4
t−2∆Mu+

7

8
t−2∆Rku− (n− 1)t2−

4
n ∆̃σu

+
1

4
t2−

4
nRσu− 1

2
t2Λu = 0.

For a more detailed exposition we refer to [8, Chapter 4.2].
Finally, let us look at the Wheeler-DeWitt equation which we solved when

we quantized gravity combined with the forces of the Standard Model, cf. [6].
For our purpose the reference [8, Chapter 5.4] is more suitable since, there,
we also added a scalar field map such that the combined Hamilton function
has the form

(2.16)

H = HG +HS +HYM +HH +HD

= HG +HS + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG +HS + t−
2
3 H̃SM ,

where the subscripts YM , H, D refer to the Yang-Mills, Higgs and Dirac
fields and SM to the fields of the Standard Model or to a corresponding
subset of fields. The Hamilton constraint

(2.17) H = 0

will be quantized by first quantizing the Hamiltonians HG+HS in the fibers
for general metrics resulting in a hyperbolic operator

(2.18) ĤG + ĤS

But the expression

(2.19) ĤGu+ ĤSu

will be evaluated (x, t, δij , θ̄
a), where δij is the standard Euclidean metric in

S0 = Rn, n = 3, and

(2.20) θ̄a(x) = 1 ∀ 1 ≤ a ≤ k.
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The Hamilton function HSM , which represents spatial fields and is indepen-
dent of t, is quantized in (S0, δij) by the usual methods of Quantum Field
Theory (QFT). The Wheeler-DeWitt equation then has the form

(2.21)
Ĥu = α−1

N { n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)u̇)

− t−2∆Mu}+ α−1
N 2t2Λu+ t−

2
3 ĤSMu = 0,

where αN is a positive coupling constant and where we also assume that u
does not depend on θa(x).

We then solve the Wheeler-DeWitt equation by using separation of vari-
ables. The operator ĤSM is acting only in the base space S0, such that the
spatial eigendistributions, or approximate eigendistributions, ψ satisfying

(2.22) ˆ̃HSMψ = µψ, µ > 0

can be derived by applying standard methods of QFT.
The remaining operator in (2.21) is acting only in the fibers, i.e., we can

use the eigenfunctions v = v(σij) of −∆M , which represent the elementary
gravitons, satisfying

(2.23) −∆Mv = (|λ|2 + |ρ|2)v ∀σij ∈M

and

(2.24) v(δij) = 1 ∀x ∈ S0,

cf. [8, Theorem 3.2.3, p. 76], and where

(2.25) |ρ|2 = 1

if n = 3, compare [8, equation (2.2.34), p. 49] and (1.30) on page 5.
Hence, we make the ansatz

(2.26) u = wvψ,

where w = w(t) only depends on t > 0. Then, combining (2.21), (2.22),
(2.23), (2.24) and (2.25) we derive an ODE which must be solved by w,
namely,

(2.27)

n

16(n− 1)
t−(m+k) ∂

∂t
(t(m+k)ẇ)

+ t−2(|λ|2 + 1)w + 2t2Λw + αN t
− 2

3µw = 0.

Rewriting this ODE as

(2.28) −t−(m+k) ∂

∂t
(t(m+k)ẇ)− µ0t

−2w −m2t
2Λw = m1t

− 2
3w,

where

(2.29) µ0 =
16(n− 1)

n
(|λ|2 + 1),

(2.30) m1 =
16(n− 1)

n
αNµ
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and

(2.31) m2 =
32(n− 1)

n
,

then the left-hand side of (2.28) is identical to the left-hand side of equation
(1.31) on page 5. However, on the right-hand side of these equations we have
different powers of t which will lead to slightly different asymptotic estimates
from above near the origin for the corresponding solutions. In order to unify
the approach we shall consider the temporal equation

(2.32) −t−(m+k) ∂

∂t
(t(m+k)ẇ)− µ0t

−2w −m2t
2Λw = m1t

qw,

where

(2.33) −2 < q < 2

such that the resulting estimates can be applied in both cases.
Using the same transformation as in (1.33) on page 5 we define the function

(2.34) u = t
m+k−1

2 w

which satisfies the equation

(2.35) −t−1 ∂

∂t

(
t
∂u

∂t

)
− t−2µ̄u− t2m2Λu = m1t

qu,

where

(2.36) µ̄ = µ0 −
(
m+ k − 1

2

)2

is negative if k ∈ N is large enough. If in addition the cosmological constant
is also negative

(2.37) Λ < 0,

then (2.35) can be looked at as an eigenvalue equation with positive eigen-
values m1 in an appropriate Hilbert space. We shall solve the eigenvalue
problem in the next section and prove asymptotic estimates near the singu-
larity which will allow us to deduce that unitarily equivalent eigenfunctions
can be extended past the singularity as sufficiently smooth functions.

3. Extending the temporal solutions past the singularity

In this section we shall prove asymptotic estimates from above near the
singularity for the solutions of the equation (2.35) and we shall use these
estimates to conclude that the unitarily equivalent eigenfunction

(3.1) ũ = t
1
2u

can be extended past the singularity under suitable assumptions.
The extension itself is fairly easy we simply mirror the solution on the

positive axes to the negative axes where even or odd mirroring are both pos-
sible. The crucial point is to show that the mirrored functions are sufficiently
smooth in R and that the temporal equation is valid in the classical sense
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even at the singularity t = 0. In order to achieve these results we have to
prove that the temporal solutions and there derivatives, up to the order two
at least, vanish sufficiently fast at t = 0.

Next, let us prove sharp estimates near the origin for eigenfunctions of the
equation (2.35) which will play a fundamental role in deducing that the uni-
tarily equivalent temporal eigenfunctions ũ in (3.1) which are the eigenfunc-
tions of unitarily equivalent self-adjoint operator, can be smoothly extended
past the big bang singularity in t = 0.

For a better understanding we first need a few definitions. The operator

(3.2) Bu = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u

is known as a Bessel operator.

Definition 3.1. Let I = (0,∞) and let r ∈ R. Then we define

(3.3) L2(I, r) = {u ∈ L2
loc(I,R) :

∫
I

tr|u|2 <∞}.

L2(I, r) is a Hilbert space with scalar product

(3.4) ⟨u1, u2⟩r =

∫
I

tru1u2,

but let us emphasize that we shall apply this definition only for r ̸= 2. The
scalar product ⟨·, ·⟩2 will be defined differently.

We consider real valued functions for simplicity but we could just as well
allow complex valued functions with the standard scalar product, or more
precisely, sesquilinear form.

Definition 3.2. For functions u ∈ C∞
c (I) define the operator

(3.5) A1u = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u− t2m2Λu,

as well as the scalar product

(3.6) ⟨u1, u2⟩2 = ⟨Bu1 + t2m2u1, u2⟩1 ∀u1, u2 ∈ C∞
c (I).

The right-hand side of (3.6) is an integral. Integrating by parts we deduce

(3.7) ⟨u1, u2⟩2 =

∫
I

(tu̇1u̇2 + µ2t−1u1u2 + t3m2u1u2),

i.e., the scalar product is indeed positive definite because of the assumption
µ > 0. Let us define the norm

(3.8) ∥u∥22 = ⟨u, u⟩2 ∀u ∈ C∞
c (I)

and the Hilbert space H2 = H2(I) as the closure of C∞
c (I) with respect to

the norm ∥·∥2.
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Proposition 3.3. The functions u ∈ H2 have the properties

(3.9) u ∈ C0([0,∞)),

(3.10) |u(t)| ≤ c∥u∥2 ∀ t ∈ I,

where c = c(µ,m2, |Λ|),
(3.11) lim

t→0
u(t) = 0

and

(3.12) |u(t)| ≤ c∥u∥2t−1 ∀ t ∈ I,

where c is a different constant depending on µ,m2 and |Λ|.

For a proof we refer to [8, Proposition 3.4.3, p. 82].

Theorem 3.4. Let u ∈ H2 satisfy the equation

(3.13) A1u = −t−1 ∂

∂t

(
t
∂u

∂t

)
+ t−2µ2u+ t2m2

2u = λtqu,

where the constants µ,m2 and λ are strictly positive and the exponent q sat-
isfies

(3.14) −2 < q < 2.

Since µ is especially important, let us emphasize that

(3.15) µ2 = −µ̄ =
(m+ k − 1)2

4
+ γ0|θ0|2 − µ0,

where γ0 is a positive constant, θ0 ∈ Rk an arbitrary, but fixed, vector and
µ0 > 0. Then, for every ϵ > 0 there exists 0 < t0 < 1 and a positive constant
c1 such that u does not vanish in the interval (0, t0] and can be estimates by

(3.16) |u(t)| ≤ c1t
µϵ ∀ t ∈ (0, t0],

where 0 < µϵ is defined by

(3.17) µ2
ϵ = µ2 − ϵ > 0.

Proof. Let us first prove that u does not vanish for small t > 0. Arguing by
contradiction let 0 < t0 < 1 be a point where

(3.18) u(t0) = 0.

Multiplying the equation (3.13) by tu and integrating by parts over the in-
terval [0, t0] we infer

(3.19)
∫ t0

0

µ2t−1|u|2 ≤
∫ t0

0

λt1+q|u|2

and conclude further that t0 cannot be arbitrarily close to 0.
Thus, let us assume u to be real valued and strictly positive in (0, t0] for

some small t0. To prove the inequality in (3.16), let us consider the equation

(3.20) A1,ϵψ = λψ in (0,∞)
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requiring

(3.21) ψ(0) = 0,

where the operator A1,ϵ is defined by replacing µ by µϵ in equation (3.13).
One can easily verify that a solution ψ = ψ(t) satisfying both equations is
given by defining

(3.22) ψ(t) = e
1
2m2t

2

tµϵM(a, b,m2t
2),

where

(3.23) a =
1

2
(µϵ + 1)− 1

4

λ

m2

and

(3.24) b = µϵ + 1.

M = M(a, b, z), z ∈ C, is known as Kummers’s function or as the entire
confluent hypergeometric function which is a solution of Kummer’s equation

(3.25) zy′′ + (b− z)y′ − ay = 0

and which can be expressed by the power series

(3.26) 1F1(a, b, z) =M(a, b, z) = 1 +
a

b
z +

∞∑
k=2

a(a+ 1) · · · (a+ k − 1)zk

b(b+ 1) · · · (b+ k − 1)k!

which is absolutely convergent for any z ∈ C provided

(3.27) b ̸∈ Z≤0,

which is certainly true in our case. For a detailed analysis of the solutions of
Kummer’s equation we refer to [11, Chapter 13.2, p. 322] or [9, p. 427].

Since u is a subsolution of the equation (3.20) in the interval (0, t0), i.e.,

(3.28) A1,ϵu ≤ λu,

because

(3.29) A1,ϵu = λtqu− ϵt−2u < 0

if t0 is small enough. Moreover, ψ(t) is positive if t0 is small, for M(a, b, 0) =
1, hence, there exists a constant c2 such that

(3.30) u(t0) = c2ψ(t0).

In order to prove (3.16) we multiply the inequality

(3.31) A1,ϵ(u− c2ψ) ≤ λ(u− c2ψ)

by tmax(u− c2ψ, 0) and partially integrating the result in the interval (0, t0]
yields

(3.32)
∫ t0

0

µ2
ϵ t

−1 max(u− c2ψ, 0)
2 ≤

∫ t0

0

λmax(u− c2ψ, 0)
2

from which we deduce

(3.33) u(t) ≤ c2ψ(t) ∀ t ∈ [0, t0]
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if t0 is small, completing the proof of the theorem, in view of the definition
of ψ in (3.22). □

Remark 3.5. The assumptions regarding the coefficients and the expo-
nents of the ODE in the theorem above cover the cases we are confronted
with after the quantization of the full Einstein equations, where θ0 ∈ Rk and
n ≥ 3 can be arbitrary and q = 2 − 2

n , as well as in case of the Wheeler-
DeWitt equation, where we have to choose θ0 = 0, n=3 and q = − 2

3 . To
ensure that the right-hand side of equation (3.15) is positive in the latter case
the dimension k of the target space of the scalar field map, which is Rk, has
to be sufficiently large.

We shall apply the estimate (3.16) to the function

(3.34) ũ = t
1
2u,

which satisfies the differential equation

(3.35) −¨̃u+ t−2µ̃2ũ+ t2m2
2ũ = λtqũ,

where

(3.36) µ̃2 = µ2 − 1

4
,

as can be easily checked.
But before we shall prove that the eigenfunctions in equation (3.35) can

be extended past the singularity as sufficiently smooth functions, let us verify
that equation (3.35) is unitarily equivalent to equation (3.13), if we consider
complex valued functions, otherwise there is an orthogonal equivalence. After
that verification the countably many eigenfunctions ũi with eigenvalues λi can
be looked at as the temporal eigenfunctions of our model of quantum gravity
which can be extended past the singularity. We shall also prove that equation
(3.35) can be defined as a classical equation for (ũi, λi) valid in R provided
tq is replaced by |t|q and ũi is extended by reflection either even or odd.

Definition 3.6. For functions u ∈ C∞
c (I) define the operators

(3.37) Aru = −t−r ∂

∂t

(
tr
∂u

∂t

)
+ t−2µ2u+ t2m2u

and the scalar product

(3.38) ⟨u1, u2⟩2 = ⟨Aru1, u2⟩r ∀u1, u2 ∈ C∞
c (I).

The right-hand side of (3.38) is an integral. Integrating by parts we deduce

(3.39) ⟨u1, u2⟩2 =

∫
I

(tru̇1u̇2 + µ2tr−2u1u2 + tr+2m2u1u2).

Let us define the norm

(3.40) ∥u∥22 = ⟨u, u⟩2 ∀u ∈ C∞
c (I)
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and the Hilbert space H2 = H2(I) as the closure of C∞
c (I) with respect to

the norm ∥·∥2.
Define the operator A0 in C∞

c (I) by

(3.41) A0 = −¨̃u+ t−2µ̃2ũ+ t2m2ũ,

where

(3.42) µ̃2 = µ2 +
r2

4
− r

2

is supposed to be strictly positive and let H̃2 be the completion with respect
to the corresponding norm

(3.43) |||ũ|||2 =

∫ ∞

0

(| ˙̃u|2 + t−2µ̃2ũ2 + t2m2ũ
2) = ⟨A0ũ, ũ⟩ ≡ ⟨⟨ũ, ũ⟩⟩2

Proposition 3.7. The functions ũ ∈ H̃2 have the properties

(3.44) ũ ∈ C0([0,∞)),

(3.45) |ũ(t)| ≤ c|||ũ|||2 ∀ t ∈ I,

where c = c(µ̄,m2),

(3.46) |ũ(t)| ≤ c|||ũ|||2t
1
2 ∀ t ∈ I,

as well as

(3.47) |ũ(t)| ≤ c|||ũ|||2t−
1
2 ∀ t ∈ I,

where c is a different constant depending on µ̃,m2.

Proof. Let us first assume ũ ∈ C∞
c (I) and let δ > 0, then

(3.48) ũ2(δ) = 2

∫ δ

0

˙̃uũ ≤
∫ δ

0

| ˙̃u|2 +
∫ δ

0

|ũ|2.

This estimate is also valid for any ũ ∈ H̃2 by approximation which in turn
implies the relations (3.45).

Next let us slightly modify the previous argument to obtain

(3.49) ũ2(δ) = 2

∫ δ

0

˙̃uũ ≤ 2

(∫ δ

0

˙̃u2
) 1

2
(∫ δ

0

t−2t2ũ2
) 1

2

≤ c|||ũ|||22 δ

from which we infer (3.46) and also (3.44) since u is continuous in I.
It remains to prove (3.47). Let ũ ∈ H̃2 and define ṽ = ṽ(τ) by

(3.50) ṽ(τ) = ũ(τ−1),

where τ = t−1 for all t > 0. Applying simple calculus arguments we then
obtain

(3.51)
∫ ∞

0

{τ2|ṽ′|2 + τ2µ̃2|ṽ|2 + τ−4m2|ṽ|2}dτ = |||ũ|||22
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as well as

(3.52)
∫ ∞

0

{τ2|ṽ′|2 + τ2µ̃2|ṽ|2}dτ =

∫ ∞

0

{| ˙̃u|2 + t−2µ̃2|ũ|2}dt.

Moreover, first assuming, as before, that ũ and hence ṽ are test functions we
argue as in (3.49) that for any δ > 0

(3.53)

ṽ2(δ) = 2

∫ δ

0

ṽ′ṽ ≤ 2

(∫ δ

0

τ2|ṽ′|2
) 1

2
(∫ δ

0

τ−2|ṽ|2
) 1

2

≤ 2

(∫ δ

0

τ2|ṽ′|2
) 1

2
(∫ δ

0

τ−4|ṽ|2
) 1

2

δ

≤ c|||ũ|||22 δ,
where we used (3.51) for the last inequality and where c = c(µ̃,m2). Setting
δ = t−1 for arbitrary t > 0 we have proved the estimate (3.47) for test
functions and hence for arbitrary ũ ∈ H̃2. □

Lemma 3.8. Assuming the definitions in Definition 3.6, then the map

(3.54)
φ : H2 → H̃2,

u→ ũ = t
r
2 u

is orthogonal if the functions are supposed to be real valued and unitary if
complex functions are considered and the scalar products are suitably modified,
i.e,

(3.55) ⟨Aru1, u2⟩r = ⟨A0ũ1, ũ2⟩ ∀ui ∈ H2, i = 1, 2,

and

(3.56)
Ar = φ−1 ◦A0 ◦ φ,
A0 = φ ◦Ar ◦ φ−1,

i.e., Ar and A0 are unitarily equivalent.

Proof. For the prove of (3.55) we may assume that the functions are real
valued. The relation is then easily verified by applying elementary calculus:

(3.57) tru̇1u̇2 = ˙̃u1 ˙̃u2 +
r2

4
t−2ũ1ũ2 −

r

2
t−1(ũ1ũ2)

′

from which we deduce by applying partial integration

(3.58)

∫ ∞

0

{tru̇1u̇2 + µ2tr−2u1u2 +m2t
r+2u1u2} =∫ ∞

0

{ ˙̃u1 ˙̃u2 + (µ2 +
r2

4
− r

2
)t−2ũ1ũ2 +m2t

2ũ1ũ2}.

Moreover, a straightforward calculation reveals that for test functions u

(3.59) A0ũ = t
r
2Aru

proving (3.56). □
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The equations (3.35) resp.

(3.60) Ar = λtqu

can be looked at as eigenvalue equations which can be expressed abstractly
in the form: u ∈ H2 satisfies

(3.61) B(u, v) ≡ ⟨Aru, v⟩r = λK(u, v) ∀ v ∈ H2,

where

(3.62) K(u, v) =

∫ ∞

0

tr+quv

and where we only consider real valued functions for simplicity. Since r ∈ R
is arbitrary the case r = 0 is also covered.

Theorem 3.9. The eigenvalue problem (3.61) is orthogonally (unitarily)
equivalent to the corresponding eigenvalue problem: ũ ∈ H̃2 satisfies

(3.63) B̃(ũ, ṽ) ≡ ⟨A0ũ, ṽ⟩ = λK̃(ũ, ṽ) ∀ ṽ ∈ H̃2,

where

(3.64) K̃(ũ, ṽ) =

∫ ∞

0

tqũṽ.

Hence, the respective eigenvalues are identical.

Proof. Let φ be the unitary map in Lemma 3.8. In view of (3.55) we conclude

(3.65) B(u, v) = B̃(φ(u), φ(v))

and also

(3.66) K(u, v) = K̃(φ(u), φ(v))

completing the proof. □

If q ∈ R satisfies the estimates

(3.67) −2 < q < 2

then the quadratic form

(3.68) K̃(v) = K̃(v, v)

is compact with respect to the quadratic form

(3.69) B̃(ṽ) = B̃(ṽ, ṽ),

i.e., if

(3.70) B̃(ṽi, ṽ) → B̃(ṽ0), ṽ) ∀ ṽ ∈ H̃2

then

(3.71) K̃(ṽi − ṽ0) → 0.

The proof is well-known and fairly simple: In compact subintervals of (0,∞)
the compactness follows from the Sobolev embedding theorems and near the



EXTENDING SOLUTIONS OF QUANTUM GRAVITY PAST THE SINGULARITY 21

endpoints of the interval t = 0 and t = ∞ the compactness can be deduced
from the finiteness of

(3.72)
∫ ∞

0

(t−2 + t2)|ṽi − ṽ0|2 ≤ const ∀ i ∈ N.

The latter estimate is due to the definition of the scalar product B̃ and the
uniform boundedness principle which says that any weakly bounded sequence
in a Banach space is uniformly bounded.

If these conditions are satisfied then the following theorem is well-known:

Theorem 3.10. The eigenvalue problem (3.63) has countably many solu-
tions (λi, ũi), ũi ∈ H̃2, with the properties

(3.73) λi < λi+1 ∀ i ∈ N,

(3.74) lim
i
λi = ∞,

(3.75) K̃(ũi, ũj) = δij .

The pairs (λi, ũi) are recursively defined by the variational problems

(3.76) λ0 = B̃(ũ0) = inf

{
B̃(u)

K̃(u)
: 0 ̸= u ∈ H̃2

}
and for i > 0

(3.77) λi = B̃(ũi) = inf

{
B̃(u)

K̃(u)
: 0 ̸= u ∈ H̃2, K̃(u, uj) = 0, 0 ≤ j ≤ i−1

}
.

The (ũi) form a Hilbert space basis in H̃2 and in L2(I, q), the eigenvalues are
strictly positive and the eigenspaces are one dimensional.

Proof. This theorem is well-known and goes back to the book of Courant-
Hilbert [2], though in a general separable Hilbert space the eigenvalues are
not all positive and the eigenspaces are only finite dimensional. For a proof
in the general case we refer to [3, Theorem 1.6.3, p. 37].

The positivity of the eigenvalues in the above theorem is obvious and
the fact that the eigenspaces are one dimensional is proved by contradiction.
Thus, suppose there exist an eigenvalue λ = λi and two corresponding linearly
independent eigenfunctions ũ1, ũ2 ∈ H̃2. Then, for any t0 > 0 there would
exist an eigenfunction u ∈ H̃2 with eigenvalue λ satisfying u(t0) = 0 and the
equation (3.63). Multiplying this equation by u and integrating the result in
the interval (0, t0) with respect to the measure dt we obtain

(3.78)
∫ t0

0

µ̃2t−2u2 ≤ t2+q
0

∫ t0

0

λt−2u2,

where we used

(3.79) 1 ≤ t0
t
, ∀ t ∈ (0, t0),



22 CLAUS GERHARDT

and

(3.80) 2 + q > 0,

in view of (3.14), yielding a contradiction if t0 is sufficiently small. □

Remark 3.11. The previous results are a also valid if instead of the
coefficient

(3.81) m2t
2

we consider the actual coefficient

(3.82) m2|Λ|t2,
where in our case Λ < 0. The eigenvalues λi then depend on Λ.

In [8, Lemma 9.4.8, p. 240] we proved the following lemma, which we in-
clude here together with an appropriately modified proof for the convenience
of the reader.

Lemma 3.12. Let λi be the temporal eigenvalues depending on Λ and let
λ̄i be the corresponding eigenvalues for

(3.83) |Λ| = 1,

then

(3.84) λi = λ̄i|Λ|
2+q
4 .

Proof. Let B̃ and K̃ be the quadratic forms defined by

(3.85) B̃(u) =

∫ ∞

0

{|u̇|2 + t−2|µ̃|2|u|2 + t2m2|Λ||u|2}

and

(3.86) K̃(u) = m3

∫ ∞

0

tq|u|2

and let B̃1(u) the quadratic form by choosing |Λ| = 1 in B̃. Then we have

(3.87)
B̃(u)

K̃(u)
= |Λ|

2+q
4
B̃1(u)

K̃(u)
∀ 0 ̸= u ∈ C∞

c (R+).

To prove (3.87) we introduce a new integration variable τ on the left-hand
side

(3.88) t = µτ, µ > 0,

to conclude

(3.89)
B̃(u)

K̃(u)
= µ−(2+q) B̃1(u)

K̃(u)
∀ 0 ̸= u ∈ C∞

c (R+).

provided

(3.90) µ = |Λ|− 1
4 .
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The relation (3.87) immediately implies (3.84), in view of Theorem 3.10. □

Remark 3.13. Let (ũi, λi) be the previous eigenfunctions and eigenvalues
of the operator

(3.91) −¨̃u+ t−2µ̃2ũ+ t2m2
2|Λ|ũ

with respect to the quadratic form

(3.92) K̃(ũ) =

∫ ∞

0

tq|ũ|2,

define

(3.93) φ0(t) = tq

and let H0 be the operator

(3.94) φ−1
0 (−¨̃u+ t−2µ̃2ũ+ t2m2

2|Λ|ũ)
defined in the dense subspace of the Hilbert space H = L2(I, φ0dt) generated
by the eigenfunctions (ũi), then H0 is essentially self-adjoint and its closure,
which we denote by the same symbol, is self-adjoint; for a proof see the
remarks following [8, Definition 3.4.14, p.91].

In the next section we shall prove that for any β > 0

(3.95) e−βH0

is of trace class in H, i.e.,

(3.96) tr(e−βH0) =

∞∑
i=0

e−βλi <∞.

Because we consider arbitrary q satisfying

(3.97) −2 < q < 2

and not only the special values

(3.98) q = 2− 2

n
∨ q = −2

3

we cannot refer to a previous result and an extra proof is necessary.
After having established that ũ is unitarily equivalent to the solution u

of (3.13) which in turn is unitarily equivalent to the solution w of equation
(1.31) on page 5 resp. (2.28) on page 12, cf. [8, Lemma 3.4.10, p. 89], we shall
consider the equation (3.35) and its solution ũ, defined in (3.34), to be the
temporal eigenfunction equation which we shall extend past the singularity.
In view of the estimate (3.16), where µϵ is defined in (3.17) we infer, by using
the fact that we may assume u to be positive in (0, t0],

(3.99) 0 < ũ ≤ c1t
µϵ+

1
2 ∀ t ∈ (0, t0],

where ϵ > 0 is as small as we like but fixed. The constant c1 depends on ϵ
and will tend to infinity if ϵ tends to zero. However, we are able to conclude
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Lemma 3.14. Let 1 ≤ m0 ∈ N and assume

(3.100) µ+
1

2
> m0,

then there exists ϵ > 0 and positive constants c1, t0 such that

(3.101) 0 < ũ ≤ c1t
m0+ϵ ∀ t ∈ I = (0, t0].

The proof is obvious.

Lemma 3.15. Let the assumption (3.100) be satisfied for m0 = 1, then

(3.102) ũ ∈ C1[0, t0] ∧ ˙̃u(0) = 0.

Moreover, ũ is strictly convex in [0, t0] if t0 is small enough. Extending ũ to
[−t0, 0) by defining

(3.103) ũ(t) =

{
ũ(t), t ≥ 0,

ũ(−t), t < 0,

then the extended function is of class C1 in [−t0, t0], strictly convex and

(3.104) ¨̃u > 0

in the distributional sense, i.e.,

(3.105) ⟨ũ, η̈⟩ > 0 ∀ 0 ≤ η ∈ C∞
c (−t0, t0),

which do not vanish identically.

Proof. From the equation (3.35) we deduce

(3.106) ¨̃u(t) > 0 ∀ t ∈ (0, t0),

if t0 is small enough, hence ũ is strictly convex in the interval. Since ũ > 0
and and ũ(0) = 0, we infer

(3.107) ˙̃u(t) > 0 ∀ t ∈ I,

because ˙̃u is also monotone increasing. Hence, we conclude

(3.108) 0 ≤ c = lim
t→0

˙̃u(t)

exists. If c > 0 we would obtain a contradiction in view of (3.101), i.e., the
right derivative of ũ satisfies

(3.109) ˙̃u(0) = lim
t→0

ũ(t)

t
= 0 = lim

t→0
˙̃u(t),

hence, we have proved (3.102).
Finally, (3.104) is valid for any 0 ̸= t ∈ (−t0, t0) and the relation (3.105)

follows by partial integration over the open subintervals {t ̸= 0} by using

(3.110) ũ(0) = 0 = ˙̃u(0).

□
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Lemma 3.16. Let the assumption (3.100) be satisfied for m0 = 2, then

(3.111) ũ ∈ C2([0, t0]),

(3.112) lim
t→0

ũ(t)

t2
= 0

and

(3.113) ¨̃u(0) = 0 = lim
t→0

¨̃u(t) ∧ lim
t→0

˙̃u(t)

t
= 0.

Moreover, these properties are also valid for the extended function.

Proof. The equation (3.112) is due to (3.101), while the first relation in
(3.113) immediate follows from (3.112) and the equation satisfied by ũ.

To prove the second equation in (3.113) we apply De L’Hospital’s rule and
use the first equation. Finally, it is obvious that these properties are also
valid for the extended function. □

We are now able to prove by induction

Theorem 3.17. Let the assumption (3.100) be satisfied for arbitrary 2 ≤
m0 ∈ N, then

(3.114) ũ ∈ Cm0([0, t0]) ∧ ũ(m0)(0) = 0 = lim
t→0

ũ(m0)(t)

as well as

(3.115) lim
t→0

ũ(k)(t)

tm0−k
= 0 ∀ 1 ≤ k ≤ m0, k ∈ N,

where ũ(k) denotes the k-th derivative of ũ. These properties are also valid
for the extended function.

Proof. The claims in (3.114) are certainly correct provided the relations in
(3.115) are valid. Hence, it suffices to prove the relations in (3.115) per
induction with respect to k. Let us first consider the case k = 1. Applying
De L’Hospital’s rule we deduce

(3.116) lim
t→0

˙̃u(t)

tm0−1
= (m0 − 1)−1 lim

t→0

¨̃u(t)

tm0−2
= (m0 − 1)−1 lim

t→0

ũ(t)

tm0
= 0,

where we used for the second equality the equation satisfied by ũ and for the
last the estimate (3.101). The last two arguments also reveal that the claim
in (3.115) is true for k = 2.

Thus, let us assume that the limit relations in (3.115) are already valid for
1 ≤ k ≤ p < m0 , p ≥ 2, and let us prove that then they are also satisfied for
k = p+ 1. Let us recall that ũ is a solution of the equation (3.35) which we
can write in the form

(3.117) ¨̃u = µ̃2t−2ũ+ (m2
2t

2 − λtq)ũ.
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Differentiating both sides with respect to Dp−1, where D denotes differenti-
ation with respect to t, we deduce, by applying the product rule,

(3.118) ũ(p+1) = µ̃2

p−1∑
k=0

cp,kt
−2−kũ(p−1−k) +R1 +R2,

where the additional terms R1, R2 have a similar structure as the detailed
sum, but the exponents of t are less critical for small t > 0 than in the first
sum. The arguments we shall use in the case of the first sum will also apply
in case of the additional terms and will therefore be omitted.

Next, we have to prove

(3.119) lim
t→0

ũ(p+1)

tm0−(p+1)
= 0.

Indeed, we infer

(3.120)
p−1∑
k=0

cp,k
ũ(p−1−k)

t2+k+m0−(p+1)
=

p−1∑
k=0

cp,k
ũ(p−1−k)

tm0−(p−1−k)

and the right-hand side converges to zero if t tends to zero, in view of the
induction assumption. Hence, the relation (3.119) is proved completing the
proof of the theorem. □

As a corollary we obtain

Corollary 3.18. If the assumption of the preceding theorem is satisfied
then the extended solution ũ also satisfies the extended equation

(3.121) −¨̃u+ t−2µ̃2ũ+ t2m2
2ũ = λ|t|qũ

in R, where we have to replace tq by |t|q for obvious reasons. Let us emphasize
that the lower order coefficients of the ODE exhibit a singularity in t = 0 but
that both sides of the equation are continuous in the interval (−∞,∞) and
vanish in t = 0.

4. Trace class estimates for e−βH0

We consider the operator H0 in (3.94) on page 23 which is essentially
self-adjoint in

(4.1) H = L2(R+, dµ),

where

(4.2) dµ = φ0dt

with

(4.3) φ0(t) = tq,

where q satisfies the relation (3.97) and we shall also use the same symbol for
its closure, i.e., we shall assume that H0 is self-adjoint in H with eigenvectors
ui ∈ H̃2 and with eigenvalues λi satisfying the statements in Theorem 3.10
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on page 21. However, now we denote the eigenvectors by ui to improve the
readability.

Remark 4.1. The norm

(4.4) ⟨H0u, u⟩
1
2

is equivalent to the norm |||u|||2 in H̃2, since |Λ| > 0.
Let us also assume that all Hilbert spaces are complex vector spaces with

a positive definite sesquilinear form (hermitian scalar product).

We shall now prove that

(4.5) e−βH0 , β > 0,

is of trace class in H. The proof is essentially the proof given in [8, Chapter
3.5] with the necessary modifications due to the different exponent in φ0(t).

First, we need two lemmata:

Lemma 4.2. The embedding

(4.6) j : H̃2 ↪→ H0 = L2(R+, dµ̃),

where

(4.7) dµ̃ = (1 + t)−2dt,

is Hilbert-Schmidt, i.e., for any ONB (ei) in H̃2 the sum

(4.8)
∞∑
i=0

∥j(ei)∥20 <∞

is finite, where ∥·∥0 is the norm in H0. The square root of the left-hand side
of (4.8) is known as the Hilbert-Schmidt norm |j| of j and it is independent
of the ONB, cf. [10, Lemma 1, p. 158].

Proof. Let w ∈ H̃2, then, assuming w is real valued,

(4.9)
|w(t)|2 = 2

∫ t

0

ẇw ≤
∫ ∞

o

|ẇ|2 +
∫ ∞

0

|w|2

≤ c|||w|||22
for all t > 0, where ||| · |||2 is the norm in H̃2. To derive the last inequality in
(4.9) we used (3.43) on page 18. The estimate

(4.10) |w(t)| ≤ c|||w|||2 ∀ t > 0

is of course also valid for complex valued functions from which infer that, for
any t > 0, the linear form

(4.11) w → w(t), w ∈ H̃2,

is continuous, hence it can be expressed as

(4.12) w(t) = ⟨⟨φt, w⟩⟩2,
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where

(4.13) φt ∈ H̃2

and

(4.14) |||φt|||2 ≤ c,

in view of (4.10). Now, let

(4.15) ei ∈ H̃2

be an ONB, then

(4.16)
∞∑
i=0

|ei(t)|2 =

∞∑
i=0

|⟨⟨φt, ei⟩⟩2|2 = |||φt|||22 ≤ c2.

Integrating this inequality over R+ with respect to dµ̃ we infer

(4.17)
∞∑
i=0

∫ ∞

0

|ei(t)|2dµ̃ ≤ c2

completing the proof of the lemma. □

Lemma 4.3. Let ui be the eigenfunctions of H0, then there exist positive
constants c and γ such that

(4.18) |||ui|||2 ≤ c|1 + λi|γ∥ui∥0 ∀ i ∈ N,

where ∥·∥0 is the norm in H0.

Proof. We have

(4.19) ⟨H0ui, ui⟩ = λi⟨ui, ui⟩
and hence, in view of Remark 4.1,

(4.20)
|||ui|||22 ≤ c1λi

∫ ∞

0

φ0(t)|ui|2

≤ c1λi

{∫ 1

0

φ0(t)|ui|2 + c2

∫ ∞

1

t2−
2
l0 |ui|2

}
,

where l0 is very large such that

(4.21) q < 2− 2

l0
.

To estimate the second integral in the braces let us define p = 2 and such
that

(4.22) tq ≤ t2−
2
l0 = tp−

p
l0 ∀ t ≥ 1.

Then, choosing small positive constants δ and ϵ, we apply Young’s inequality,
with

(4.23) q0 =
p

p− pδ
=

1

1− δ
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and

(4.24) q′0 = δ−1

to estimate the integral from above by

(4.25)

1

q0
ϵq0

∫ ∞

1

{
tp−

p
l0 (1 + t)

p
l0

−pδ}q0 |ui|2

+
1

q′0
ϵ−q′0

∫ ∞

1

(1 + t)−( p
l0

−pδ)q′0 |ui|2.

Choosing now δ so small such that

(4.26) (
p

l0
− pδ)δ−1 > 2

the preceding integrals can be estimated from above by

(4.27)
1

q0
ϵq0

∫ ∞

1

(1 + t)p|ui|2 +
1

q′0
ϵ−q′0

∫ ∞

0

(1 + t)−2|ui|2

which in turn can be estimated by

(4.28)
1

q0
ϵq0c|||ui|||22 +

1

q′0
ϵ−q′0∥ui∥20,

in view of (3.43) on page 18.
Since −2 < q there exists ϵ0 such that

(4.29) −(2− 2ϵ0) < q,

hence, using again Young’s inequality, the first integral in the braces on the
right-hand side of (4.20) can be estimated by

(4.30)

∫ 1

0

φ0(t)|ui|2 ≤ c

∫ 1

0

t−(2−2ϵ0)|ui|2 ≤ c(1− ϵ0)ϵ
1

1−ϵ0

∫ 1

0

t−2|ui|2

+ cϵ0ϵ
− 1

ϵ0

∫ ∞

0

(1 + t)−2|ui|2

≤ c̃(1− ϵ0)ϵ
1

1−ϵ0 |||ui|||22 + cϵ0ϵ
− 1

ϵ0 ∥ui∥20.

Choosing now ϵ, γ and c appropriately the result follows. □

We are now ready to prove:

Theorem 4.4. Let β > 0, then the operator

(4.31) e−βH0

is of trace class in H, i.e.,

(4.32) tr(e−βH0) =

∞∑
i=0

e−βλi = c(β) <∞.
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Proof. In view of Lemma 4.2 the embedding

(4.33) j : H̃2 ↪→ H0

is Hilbert-Schmidt. Let

(4.34) ui ∈ H
be an ONB of eigenfunctions, then

(4.35)
e−βλi = e−βλi∥ui∥2 ≤ e−βλicλ−1

i |||ui|||22
≤ e−βλiλ−1

i c|λi + 1|2γ∥ui∥20,

in view of (4.19) and (4.18), but

(4.36) ∥ui∥20 = |||ui|||22 ∥ũi∥20 ≤ cλi∥ũi∥20,
where

(4.37) ũi = ui|||ui|||−1
2

is an ONB in H2, yielding

(4.38)
∞∑
i=0

e−βλi ≤ cβ

∞∑
i=0

∥ũi∥20 <∞,

since j is Hilbert-Schmidt. Here we used Remark 4.1, since the scalar product
in H̃2 has to be defined by

(4.39) ⟨H0u, v⟩
in order to deduce that the eigenfunctions are also mutually orthogonal in
H̃2, and also λ0 > 0. □

Remark 4.5. This result enables us to apply quantum statistics to our
model of quantum gravity and to define a partition function Z, a density
operator ρ and the von Neumann entropy S in a corresponding Fock space.
For details we refer to [8, Chapter 9.5].
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