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Abstract. We prove the existence of a spectral resolution of the
Wheeler-DeWitt equation when the matter field is provided by a Yang-

Mills field, with or without mass term, if the spatial geometry of the

underlying spacetime is homothetic to R3. The energy levels of the
resulting quantum model, i.e., the eigenvalues of the corresponding

self-adjoint Hamiltonian with a pure point spectrum, are strictly posi-

tive.
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1. Introduction

In a recent paper [2] we proved the existence of a spectral resolution of
the Wheeler-DeWitt equation when the matter field is provided by a massive
Yang-Mills field. The underlying spacetimes could be either spatially closed,
i.e., spatially homothetic to S3, or unbounded, i.e., spatially homothetic to
R3.

However, the resulting quantum models had energy levels ranging from
−∞ to ∞, due to the employed techniques.

In the present paper we prove, in case that the underlying spacetime is
spatially homothetic to R3, a different spectral resolution the energy levels
of which are strictly positive.

As we have explained in [2, Introduction] solving the Wheeler-DeWitt
equation comprises three steps: First, the Hamilton operators correspond-
ing to the gravitational field and the matter field, respectively, have to be
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separated; second, for one of the operators a complete set of eigenfunctions
has to be found, i.e., a free spectral resolution has to be proved without any
constraints; third, for the remaining Hamilton operator then a constrained
spectral resolution has to be found by looking at the Wheeler-DeWitt equa-
tion as an implicit eigenvalue problem.

In our previous paper we treated the open and closed spatial geometries
simultaneously and, therefore, had to use the Hamilton operator correspond-
ing to the gravitational field to solve the free eigenvalue problem and the
Hamilton operator corresponding to the Yang-Mills field to solve the implicit
eigenvalue problem. For this reason we also had to assume a massive Yang-
Mills field, since the scalar factor representing the mass played the role of the
implicit eigenvalue.

However, when assuming flat spatial sections a different approach is pos-
sible with positive energy levels. The technical difference is that now the
gravitational Hamiltonian H1 can be used to solve the implicit eigenvalue
problem instead of the Hamiltonian of the Yang-Mills field.

The Wheeler-DeWitt equation had the form, cf. [2, Theorem 3.2],

(1.1) H2ψ −H1ψ = 0,

where the wave function ψ = ψ(r, y) belongs to a suitable subspace of
L2(R+ × R,C) and where

(1.2) H1ψ = −ψ̈ − Λ̄r4ψ + 4κ̃r2ψ,

(1.3) H2ψ = −c1ψ′′ + V ψ − µ̄y2ψ.

Here, the variables r resp. y represent the scale factor resp. the Yang-Mills
field, and a dot indicates differentiation with respect to r and a prime with
respect to y. Λ̄ is a positive multiple of the cosmological constant Λ, κ̃ the
spatial curvature, i.e., κ̃ ∈ {0, 1}, c1 a positive constant, µ̄ a positive multiple
of the mass of the Yang-Mills field and V the potential

(1.4) V = 2αM (κ̃y + y2)2,

where αM is a positive coupling constant for the matter Lagrangian, cf. [2,
equ. (1.13)].
H1 is the Hamiltonian of the gravitational field and H2 the Hamiltonian

of the (massive) Yang-Mills field.
Contrary to the situation in [2] µ̄ will now be fixed, only subject to the

requirement

(1.5) µ̄ < µ̄0,

where 0 < µ̄0 is an extremal value such that the free eigenvalue problem

(1.6) H2η = µη

will have a smallest eigenvalue µ = µ0 = 0 when µ̄ = µ̄0 and κ̃ = 0.
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In case µ̄ < µ̄0 and κ̃ = 0 the smallest eigenvalue µ0 will always be positive.
We emphasize that especially the value µ̄ = 0 is allowed which would remove
the mass term in the Lagrangian.

Choosing κ̃ = 0 the Hamilton operator H1 in (1.2) has the form

(1.7) H1u = −ü− Λ̄r4u

and for this operator we can solve an implicit eigenvalue problem by using a
rescaling trick as in [3, Theorem 1.7].

We shall prove:

1.1. Theorem. Assuming κ̃ = 0 and µ̄ satisfying (1.5), there exists a
self-adjoint operator H in the Hilbert space L2(R+ × R,C),

(1.8) H = H−1
2 H̃1 = H̃1H

−1
2 ,

where

(1.9) H̃1ψ = −ψ̈ + r4ψ,

with a pure point spectrum consisting of countably many eigenvalues λij,

(1.10) λij = λ̃iµ
−1
j ,

λ̃i resp. µj are the eigenvalues of the operators H̃1 resp. H2, such that the
properly rescaled eigenfunctions

(1.11) ψij(r, y) = ψ̃ij(λ
− 1

2
ij r, y)

are solutions of the Wheeler-DeWitt equation

(1.12) H2ψij −H1ψij = 0,

where

(1.13) H1ψij = −ψ̈ij − Λ̄ijr4ψij

and

(1.14) Λ̄ij = −λ−3
ij .

The eigenvalues λij are strictly monotone increasing in i and strictly mono-
tone decreasing in j and they range from 0 to ∞

(1.15) lim
i
λij =∞ ∧ lim

j
λij = 0.

The solutions of the corresponding Schrödinger equation, with initial values
ψ̃0 belonging to the span of the eigenfunctions, provide a dynamical develop-
ment of the quantum model.

The theorem will be proved in the following two sections.
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2. The eigenvalue problems

The Hamiltonian in the Wheeler-DeWitt equation (1.1) on page 2 is al-
ready separated, hence, a separation of variables is possible

(2.1) ψ(r, y) = u(r)η(y), (r, y) ∈ R+ × R.

We first solve the free eigenvalue problem for H2

(2.2) H2η = µη,

where, for simplicity, we assume, without loss of generality, η to be real
valued.

A complete set of eigenfunctions can be found with the help of a well-
known variational principle, see e.g., [1] for details. Let H2 be the Hilbert
space obtained by the completion of C∞c (R) with respect to the norm

(2.3) ‖η‖22 =

∫
R

(|η′|2 + y4|η|2).

Then the quadratic form

(2.4) K(η) =

∫
R
|η|2

is compact in H2, cf. [3, Lemma 6.8] for a proof in a similar situation, and
the quadratic form

(2.5) 〈H2η, η〉+ cK(η) =

∫
R

(c1|η′|2 + V |η|2 − µ̄y2|η|2) + cK(η)

is uniformly positive definite if the positive constant c is large enough.
Thus, we conclude:

2.1. Theorem. There exist countably many eigenfunctions ηi with eigen-
values µi such that

(2.6) µi < µi+1 ∀ i ∈ N

and

(2.7) lim
i
µi =∞.

The eigenfunctions (ui) are dense in H2 as well as in L2(R) and the eigen-
values have multiplicities 1.

The theorem is valid for arbitrary values of µ̄ in (1.3) on page 2. More-
over, we can prove a very precise mass gap for that particular Yang-Mills
Hamiltonian:

2.2. Theorem. There exists exactly one µ̄0 > 0 such that, when choosing
µ̄ = µ̄0 in (1.3) on page 2, the corresponding smallest eigenvalue µ0 satisfies

(2.8) µ0 = 0.
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Choosing µ̄ < µ̄0 the corresponding smallest eigenvalue µ0 is strictly positive

(2.9) µ0 = µ(µ̄) > 0.

Proof. (i) For µ̄ ∈ R and η ∈ H2 consider the functional

(2.10) Jµ̄(η) =

∫
R
c1|η′|2 + V |η|2 − µ̄

∫
R
y2|η|2.

Define

(2.11) µ(µ̄) = inf{ Jµ̄(η) :

∫
R
|η|2 = 1, η ∈ H2 }

and set

(2.12) E = { µ̄ : µ(µ̄) ≤ 0 }.
We immediately deduce

(2.13) E 6= ∅
and

(2.14) µ̄ ∈ E =⇒ µ̄ > 0.

We also note that µ(µ̄) is exactly the smallest eigenvalue µ0 of the corre-
sponding eigenvalue problem (2.2)

(2.15) µ0 = µ(µ̄).

Let

(2.16) µ̄0 = inf E,

then µ̄0 ∈ E because of the compactness of the form (2.4) and hence

(2.17) µ̄0 > 0,

in view of (2.14).

(ii) Next, we claim that

(2.18) µ0 = µ(µ̄0) = 0.

We argue by contradiction. Assume

(2.19) µ0 < 0

and let η be a corresponding eigenfunction with unit L2-norm such that

(2.20) Jµ̄0
(η) = µ0 < 0,

then we infer

(2.21) Jµ̄0−δ(η) ≤ µ0

2 < 0,

if δ > 0 is small enough contradicting the definition of µ̄0.

(iii) Let µ̄ < µ̄0, then for any 0 6= η ∈ H2

(2.22) 0 ≤ Jµ̄0(η) < Jµ̄(η),
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hence

(2.23) µ(µ̄) > 0.

(iv) To prove the uniqueness of µ̄0 let µ̄1 6= µ̄0 be another value such that

(2.24) µ(µ̄1) = 0.

In view of (iii) there holds

(2.25) µ̄0 < µ̄1,

hence

(2.26) 0 ≤ Jµ̄1(η) < Jµ̄0(η) ∀ 0 6= η ∈ H2;

a contradiction. �

Next, we consider the constrained eigenvalue problem for H1. Let µ > 0 be
one of the eigenvalues of H2, then we look at the implicit eigenvalue problem

(2.27) H1u = −ü− Λ̄r4u = µu,

where Λ̄ or −Λ̄ should play the role of an eigenvalue, i.e., it is more precisely
an implicit eigenvalue problem for the operator

(2.28) u→ −ü− µu.
However, the quadratic form

(2.29) K(u) =

∫
R+

r4|u|2

is not compact relative to any reasonable energy form.
To solve (2.27) we have to use a rescaling trick as in [3, Theorem 1.7].
Let us first consider the Hamiltonian

(2.30) H̃1u = −ü+ r4u

with corresponding energy form

(2.31) 〈H̃1u, u〉 =

∫
R+

(|u̇|2 + r4|u|2) ≡ ‖u‖21

and define the real Hilbert space H1 as the completion of C∞c (R+) with
respect to the norm ‖·‖1.

The eigenvalue problem

(2.32) H̃1ũ = λ̃ũ

is then solvable and we obtain an analogue of Theorem 2.1, namely:

2.3. Theorem. There exist countably many eigenfunctions ũi with eigen-
values λ̃i such that

(2.33) λ̃i < λ̃i+1 ∀ i ∈ N,

(2.34) λ̃0 > 0,
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and

(2.35) lim
i
λ̃i =∞.

The eigenfunctions (ũi) are dense in H1 as well as in L2(R+) and the eigen-
values have multiplicities 1.

2.4. Theorem. Let µ > 0, then the pairs (ũi, λi) represent a complete set
of eigenfunctions with eigenvalues

(2.36) λi = λ̃iµ
−1

for the eigenvalue problem

(2.37) H̃1u = λµu.

The rescaled functions

(2.38) ui(r) = ũi(λ
− 1

2
i r)

then satisfy

(2.39) − ü+ λ−3
i r4ui = µui,

or, if we set

(2.40) Λ̄i = −λ−3
i ,

(2.41) − ü− Λ̄ir4ui = µui.

3. The spectral resolution

Let (µ, η) resp. (λ, ũ) satisfy

(3.1) H2η = µη

resp.

(3.2) H̃1ũ = λµũ,

then

(3.3) ψ̃ = ũη

solves

(3.4) H̃1ψ̃ = λH2ψ̃,

or equivalently, in view of Theorem 2.4 on page 7,

(3.5) H1ψ −H2ψ = 0,

where

(3.6) ψ = uη,

(3.7) u(r) = ũ(λ−
1
2 r),

(3.8) H1ψ = −ψ̈ − Λ̄r4ψ,
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and

(3.9) Λ̄ = −λ−3,

i.e., ψ is a solution of the Wheeler-DeWitt equation.
Moreover,

(3.10) ψ̇ = u̇η ∧ ψ′ = uη′,

hence,

(3.11)

∫
R+×R

|Dψ|2 =

∫
R+

|u̇|2
∫
R
|η|2 +

∫
R+

|u|2
∫
R
|η′|2,

and similarly,

(3.12)

∫
R+×R

|ψ|2yp =

∫
R+

|u|2
∫
R
|η|2yp,

for p = 2, 4, as well as

(3.13)

∫
R+×R

|ψ|2r4 =

∫
R+

|u|2r4

∫
R
|η|2.

Thus, ψ has bounded norm

(3.14) ‖ψ‖2 =

∫
R+×R

|Dψ|2 +

∫
R+×R

|ψ|2(r4 + y4).

Let H be the completion of C∞c (R+ ×R) with respect to this norm, then
H can be viewed as a dense subspace of

(3.15) H0 = L2(R+ × R)

and the eigenfunctions of (3.4) are complete in H as well as H0, where we

note that the eigenfunctions ψ̃ij are products

(3.16) ψ̃ij = ũiηj

with eigenvalues

(3.17) λij = λ̃iµ
−1
j ,

where we recall that λ̃i are the eigenvalues of the Hamiltonian H̃1, cf. Theo-
rem 2.4 on page 7. Thus, the eigenvalues λij are strictly monotone increasing
in i and strictly monotone decreasing in j and they range from 0 to ∞
(3.18) lim

i
λij =∞ ∧ lim

j
λij = 0.

The claim that the eigenfunctions are complete needs some verification.

3.1. Lemma. The eigenfunctions ψ̃ij are complete in H as well as in H0.

Proof. It suffices to prove the density in H. The eigenfunctions are certainly
complete in the closure of C∞c (R+) ⊗ C∞c (R) in H, in view of (3.10) and
(3.11), but C∞c (R+)⊗C∞c (R) is dense in H as can be easily proved with the
help of the Weierstraß approximation theorem. �
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From now on we shall assume that the functions are complex valued. De-
note by A the operator

(3.19) A = H−1
2 H̃1

with domain D(A) ⊂ H0 equal to the subspace generated by its eigenfunc-

tions ψ̃ij .
We observe that A is well defined and that

(3.20) H−1
2 H̃1 = H̃1H

−1
2 .

Moreover, one easily checks that H−1
2 and hence A are symmetric.

3.2. Lemma. A is essentially self-adjoint in H0.

Proof. It suffices to prove that R(A± i) is dense, which is evidently the case,
since the eigenfunctions belong to R(A± i). �

Let H be the closure of A, then H is self-adjoint and the spectral resolution
for the Wheeler-DeWitt equation accomplished, since there holds:

3.3. Lemma. Let (ψ, λ) ∈ H × R+ be a solution of the Wheeler-DeWitt
equation

(3.21) − ψ̈ + λ−3r4ψ −H2ψ = 0,

then there exists (ij) ∈ N× N such that

(3.22) λ = λij

and

(3.23) ψ = ψij ,

where

(3.24) ψij(r, y) = ψ̃ij(λ
− 1

2
ij r, y),

and ψ̃ij is an eigenfunction of H with eigenvalue λij.

Proof. Define

(3.25) ψ̃(r, y) = ψ(λ
1
2 r, y),

then ψ̃ is a solution of

(3.26) Hψ̃ = λψ̃,

hence the result.
Note that the eigenspaces of H are not necessarily one-dimensional. �

The Schrödinger equation for H offers a dynamical development of the
system provided the initial value is a finite superposition of eigenfunctions,
since then the time dependent solutions are also solutions of the Wheeler-
DeWitt equation, cf. the remarks at the end of [3, Section 8].
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