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Preface to the Second Edition 

As we pointed out in the Preface of the First Edition we want to quantize the full 
Einstein equations and solve the resulting equation by using separation of variables 
to express the solutions u by a product of eigenfunctions or eigendistributions of self-
adjoint operators in corresponding Hilbert spaces. For the quantization, we work in 
a fiber bundle E the base space of which is a Cauchy hypersurface (S0, σ̄ij) of the  
quantized spacetime, where σ̄ij is the induced metric. The fibers F(x) over x ∈ S0 

are Riemannian metrics gij(x) if external fields are excluded. In an appropriate local 
trivialization, we obtained a coordinate system (ξa), 0 ≤ a ≤ m, 

m = 
(n − 1)(n + 2) 

2 

n = dim S0, such that the metrics gij can be written 

gij = t 
4 
n σij, 

where 

0 < t = ξ0 < ∞ 

and the metric σij belongs to the hypersurface or subbundle 

M = {t = 1} ⊂  E. 

The solutions u then depend on the variables (t, σij, x), where σij does not depend 
on t and t not on x. We refer to t as quantum time and x, σij as spatial variables. 

In the papers [32, 35], written since the publication of the first edition, we solved 
the eigenfunction problems and we could express u in the form 

u = w ̂vv,

v
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where w = w(t) is the temporal eigenfunction, v
Λ = v

Λ

(σij(x)) can be identified with 
an eigenfunction of the Laplacian of the symmetric space 

X = SL(n, R)/SO(n) 

such that 

v̂(σ̄ij(x)) = 1 ∀x ∈ S0, 

where σ̄ij is the fixed induced metric of S0. The eigenfunctions v̂ represent the 
elementary gravitons corresponding to the degrees of freedom in choosing the entries 
of Riemannian metrics with determinants equal to one. These are all the degrees of 
freedom available because of the coordinate system invariance: For any smooth 
Riemannian metric there exists an atlas such that the determinant of the metric is 
equal to one, Lemma 3.2.1. 

Finally, the function v is an eigenfunction of an essentially self-adjoint differential 
operator in S0. 

The temporal eigenfunction was at first only a solution of an ODE but in this 
second edition, we could also prove, for arbitrary n ≥ 3, that w is an eigenfunction 
of a self-adjoint operator in R+ with a pure point spectrum provided the cosmological 
constant Λ is negative and in case n = 3 also for Λ >  0. 

In Chap. 5 we treat the quantization of gravity combined with the forces of the 
Standard Model if n = 3, but we could only solve the Wheeler-DeWitt equation, 
which is the result of the quantization of the Hamilton condition representing only 
the normal Einstein equation and does not include the tangential Einstein equations 
as well. This chapter is based on our paper [33]. 

Heidelberg, Germany 
May 2024 

Claus Gerhardt



Preface to the First Edition 

A unified quantum theory incorporating the four fundamental forces of nature is 
one of the major open problems in physics. The Standard Model combines electro-
magnetism, the strong force and the weak force, but ignores gravity. The quantization 
of gravity is therefore a necessary first step to achieve a unified quantum theory. 

The Einstein equations are the Euler-Lagrange equations of the Einstein-Hilbert 
functional and quantization of a Lagrangian theory requires to switch from a 
Lagrangian view to a Hamiltonian view. In a ground breaking paper, Arnowitt, Deser 
and Misner [2] expressed the Einstein-Hilbert Lagrangian in a form which allowed to 
derive a corresponding Hamilton function by applying the Legendre transformation. 
However, since the Einstein-Hilbert Lagrangian is singular, the Hamiltonian descrip-
tion of gravity is only correct if two additional constraints are satisfied, namely, the 
Hamilton constraint, which is expressed by the equation H = 0, where H is the 
Hamilton function, and the diffeomorphism constraint. Dirac [12] proved how to 
quantize a constrained Hamiltonian system—at least in principle—and his method 
has been applied to the Hamiltonian setting of gravity, cf. the paper of DeWitt [10] 
and the monographs by Kiefer [54] and Thiemann [63]. In the general case, when 
arbitrary globally hyperbolic spacetime metrics are allowed, the problem turned out 
to be extremely difficult and solutions could only be found by assuming a high degree 
of symmetry, cf., e.g., [20]. 

However, in [23, 24, 21] we proposed a model for the quantization of gravity 
for general hyperbolic spacetimes, in which we eliminated the diffeomorphism 
constraint by reducing the number of variables and proving that the Euler-Lagrange 
equations for this special class of metrics were still the full Einstein equations. The 
Hamiltonian description of the Einstein-Hilbert functional then allowed a canonical 
quantization. We quantized the action by looking at the Wheeler-DeWitt equation in 
a fiber bundle E, where the base space is a Cauchy hypersurface of the spacetime 
which has been quantized and the elements of the fibers are Riemannian metrics. 
The fibers of E are equipped with a Lorentzian metric such that they are globally 
hyperbolic and the transformed Hamiltonian, which is now a hyperbolic operator,

vii
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Ĥ , is a normally hyperbolic operator acting only in the fibers. The Wheeler-DeWitt 
equation has the form Ĥ u = 0 with u ∈ C∞(E, C) and we defined with the help of 
the Green’s operator a symplectic vector space and a corresponding Weyl system. 

The Wheeler-DeWitt equation seems to be the obvious quantization of the 
Hamilton condition. However, Ĥ acts only in the fibers and not in the base space 
which is due to the fact that the derivatives are only ordinary covariant derivatives 
and not functional derivatives, though they are supposed to be functional derivatives, 
but this property is not really invoked when a functional derivative is applied to u, 
since the result is the same as applying a partial derivative. 

Therefore, we discarded the Wheeler-DeWitt equation in [25] and expressed the 
Hamilton condition differently by looking at the evolution equation of the mean 
curvature of the foliation hypersurfaces M (t) and implementing the Hamilton condi-
tion on the right-hand side of this evolution equation. The left-hand side, a time 
derivative, we replaced by the corresponding Poisson brackets. After canonical quan-
tization, the Poisson brackets became a commutator and now we could employ the 
fact that the derivatives are functional derivatives, since we had to differentiate the 
scalar curvature of a metric. As a result, we obtained an elliptic differential operator 
in the base space, the main part of which was the Laplacian of the metric. 

On the right-hand side of the evolution equation the interesting term was H 2, the  
square of the mean curvature. It transformed to a second time derivative, the only 
remaining derivative with respect to a fiber variable, since the differentiations with 
respect to the other variables canceled each other. The resulting quantized equation 
is then a wave equation in a globally hyperbolic spacetime 

Q = (0, ∞) × S0, 

where S0 is the Cauchy hypersurface. When S0 is a space of constant curvature 
than the wave equation, considered only for functions u which do not depend on 
x, is identical to the equation obtained by quantizing the Hamilton constraint in a 
Friedmann universe without matter but including a cosmological constant. 

There also exist temporal and spatial self-adjoint operators H0 resp. H1 such that 
the hyperbolic equation is equivalent to 

H0u − H1u = 0, 

where u = u(t, x), and H0 has a pure point spectrum with eigenvalues λi while, for 
H1, it is possible to find corresponding eigendistributions for each of the eigenvalues 
λi, if  S0 is asymptotically Euclidean or if the quantized spacetime is a black hole with 
a negative cosmological constant, cf. [28, 27, 30]. The hyperbolic equation then has 
a sequence of smooth solutions which are products of temporal eigenfunctions and 
spatial eigendistributions. Due to this “spectral resolution” of the wave equation, we
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were also able to apply quantum statistics to the quantized systems, cf. [29]. These 
quantum statistical results could help to explain the nature of dark matter and dark 
energy. 

We believe that the wave equation model in the spacetime Q is a very promising 
model for describing quantum gravity. 

Heidelberg, Germany 
December 2017 

Claus Gerhardt
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