Übungen zu Analysis III

Blatt 5

1 Prove Remark 8.3.13.
2 Let $\Omega \subset \mathbb{R}^{n}, f \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ and assume $D f(x) \in G L(n)$ for all $x \in \Omega$, then the function $\varphi(x)=|f(x)|$ doesn't attain a maximum in Ω.
3 Let $f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that $\|D f\| \leq \kappa<1$ and define
(i) $g(x)=x+f(x) \quad \forall x \in \mathbb{R}^{n}$,
(ii) $h(x, y)=(x+f(y), y+f(x)) \quad \forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$,
then g and h are surjective.
4 Prove that the equations

$$
\begin{aligned}
x^{2}+y^{2}-\xi^{2}-\eta & =0, \\
x^{2}+2 y^{2}+3 \xi^{2}+4 \eta^{2} & =1
\end{aligned}
$$

can be solved for (ξ, η) in a neighbourhood of $(x, y, \xi, \eta)=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$. Determine the first derivatives of (ξ, η).

