Ruprecht-Karls-Universität Heidelberg

Institut für Mathematik

Prof. Dr. Claus Gerhardt






\( %Abbreviations \newcommand{\cf}{cf.\@\xspace} \newcommand{\resp}{resp.\@\xspace} \newcommand{\ac}{a.c.\@\xspace} \newcommand{\aev}{a.e.\@\xspace} \newcommand{\st}{s.t.\@\xspace} \newcommand{\wlogc}{w.l.o.g.\@\xspace} \newcommand{\Wlogc}{W.l.o.g.\@\xspace} \newcommand{\lsc}{l.s.c.\@\xspace} \newcommand{\usc}{u.s.c.\@\xspace} \newcommand{\MVT}{MVT} \newcommand{\IVP}{IVP} \newcommand{\iffc}{iff} \newcommand{\Str}{Str.\@\xspace} %Font commands \newcommand{\tbf}{\textbf} \newcommand{\tit}{\textit} \newcommand{\tsl}{\textsl} \newcommand{\tsc}{\textsc} \newcommand{\trm}{\textrm} \newcommand{\tup}{\textup}% text upright \newcommand{\mbf}{\mathbf} \newcommand{\mitc}{\mathit} \newcommand{\mrm}{\mathrm} \newcommand{\bs}{\boldsymbol} \newcommand{\mc}{\mathcal} \newcommand{\msc}{\mathscr} \newcommand\sd{\vartriangle} \newcommand\sq[1][u]{\sqrt{1+|D#1|^2}} \newcommand\sql[1][u]{\sqrt{1-|D#1|^2}} \newcommand{\un}{\infty} \newcommand{\A}{\forall} \newcommand{\E}{\exists} %Redefined commands %Greek Letters \newcommand{\al}{\alpha} \newcommand{\bet}{\beta} \newcommand{\ga}{\gamma} \newcommand{\de}{\delta } \newcommand{\e}{\epsilon} \newcommand{\ve}{\varepsilon} \newcommand{\f}{\varphi} \newcommand{\h}{\eta} \newcommand{\io}{\iota} \newcommand{\tht}{\theta} \newcommand{\ka}{\kappa} \newcommand{\lam}{\lambda} \newcommand{\m}{\mu} \newcommand{\n}{\nu} \newcommand{\om}{\omega} \newcommand{\p}{\pi} \newcommand{\vt}{\vartheta} \newcommand{\vr}{\varrho} \newcommand{\s}{\sigma} \newcommand{\x}{\xi} \newcommand{\z}{\zeta} \newcommand{\C}{\varGamma} \newcommand{\D}{\varDelta} \newcommand{\F}{\varPhi} \newcommand{\Lam}{\varLambda} \newcommand{\Om}{\varOmega} \newcommand{\vPsi}{\varPsi} \newcommand{\Si}{\varSigma} \newcommand{\N}{\mathbb N} \newcommand{\R}[1][n+1]{{\mathbb R}^{#1}} \newcommand{\Ccc}[1][n]{{\mathbb C}^{#1}} \newcommand{\Hh}[1][n+1]{{\mathbb H}^{#1}} \newcommand{\Ss}[1][n+1]{{\mathbb S}^{#1}} \newcommand{\Cc}{{\mathbb C}} \newcommand{\K}{{\mathbb K}} \newcommand{\Q}{\mathbb Q} \newcommand{\Z}{{\mathbb Z}} \newcommand{\eR}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[3]\R[]}} \newcommand{\eN}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[1]\N}} \newcommand{\eO}{\stackrel{\lower1ex \hbox{\rule{6pt}{0.5pt}}}{\msc O}} \newcommand{\mf}[1]{\mathfrak {#1}} \newcommand{\ra}{\rightarrow} \newcommand{\di}[1]{#1\nobreakdash-\hspace{0pt}dimensional}%\di n \newcommand{\nbdd}{\nobreakdash--} \newcommand{\nbd}{\nobreakdash-\hspace{0pt}} \newcommand{\ce}[1]{$C^#1$\nbd{estimate}} \newcommand{\ces}[1]{$C^#1$\nbd{estimates}} \newcommand{\fm}[1]{F_{|_{M_#1}}} \newcommand{\fmo}[1]{F_{|_{#1}}}%\fmo M \newcommand{\fu}[3]{#1\hspace{0pt}_{|_{#2_#3}}} \newcommand{\fv}[2]{#1\hspace{0pt}_{|_{#2}}} \newcommand{\cchi}[1]{\chi\hspace{0pt}_{_{#1}}} \newcommand{\tchi}[1]{\tilde\chi\hspace{0pt}_{_{#1}}} \newcommand{\so}{{\mc S_0}} \newcommand{\socc}{{\mc S_0}} \newcommand{\im}{\implies} \newcommand{\xra}{\xrightarrow} \newcommand\rra{\rightrightarrows} \newcommand{\hra}{\hookrightarrow} \newcommand{\nea}{\nearrow} \newcommand{\sea}{\searrow} \newcommand{\ua}{\uparrow} \newcommand{\da}{\downarrow} \newcommand{\rha}{\rightharpoondown} \newcommand{\wha}{\underset{w^*}\rightharpoondown} \newcommand{\whc}[1]{\underset{#1}\rightharpoondown} \newcommand{\rhom}{\rho_{\tup{dm}}} \newcommand{\rhoe}{\rho_{\tup{de}}} %\newcommand {Ddot}{\ddot} \newcommand{\diam}{diam} \newcommand{\Grad}{Grad} \newcommand{\es}{ess\,sup} \newcommand{\graph}{graph} \newcommand{\sub}{sub} \newcommand{\supp}{supp} \newcommand{\id}{id} \newcommand{\lc}{lc} \newcommand{\osc}{osc} \newcommand{\pr}{pr} \newcommand{\rec}{Re} \newcommand{\imc}{Im} \newcommand{\sign}{sign} \newcommand{\proj}{proj} \newcommand{\grad}{grad} \newcommand{\Diff}{Diff} \newcommand{\rg}{rg} \newcommand{\indm}{ind} \newcommand{\ad}{ad} \newcommand{\Ad}{Ad} \newcommand{\Int}{Int} \newcommand{\Aut}{Aut} \newcommand{\GL}{GL} \newcommand{\aut}{\mf{aut}} \newcommand{\I}{I} \newcommand{\B}{B} \newcommand{\tr}{\tup{tr}} \newcommand{\SO}{SO} \newcommand{\SU}{SU} \newcommand{\U}{U} \newcommand{\soc}{\mf{so}} \newcommand{\suc}{\mf{su}} \newcommand{\uc}{\mf{u}} \newcommand{\diag}{diag} \newcommand{\dist}{dist} \newcommand{\divc}{div} \newcommand{\card}{card} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\absb}[1]{\Bigl|#1\Bigr|} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\normb}[1]{\Big\lVert#1\Big\rVert} \newcommand{\nnorm}[1]{| \mspace{-2mu} |\mspace{-2mu}|#1| \mspace{-2mu} |\mspace{-2mu}|} \newcommand{\spd}[2]{\langle #1,#2\rangle} \newcommand{\spdd}[2]{\langle\langle #1,#2\rangle\rangle} \newcommand{\const}{\tup{const}} \newcommand{\ndash}{\nobreakdash--} %\newcommand{\msp[1]}[1]{\mspace{#1mu}} \newcommand{\wed}{\wedge} \newcommand{\pih}{\frac{\pi}{2}} %Embellishments \newcommand{\ol}{\overline} \newcommand{\pri}[1]{#1^\prime} \newcommand{\whn}[1]{\widehat{(#1_n)}} \newcommand{\wh}{\widehat} \newcommand{\wt}{\widetilde} %Logical commands \newcommand{\eqv}{\Longleftrightarrow} \newcommand{\lla}{\Longleftarrow} \newcommand{\lra}{\Longrightarrow} \newcommand{\bv}{\bigvee} \newcommand{\bw}{\bigwedge} %PDE commands \newcommand{\pa}{\partial} \newcommand{\pde}[2]{\frac {\partial#1}{\partial#2}} \newcommand\pd[3]{\frac {\partial#1}{\partial#2^#3}} %e.g. \pd fxi \newcommand\pdc[3]{\frac {\partial#1}{\partial#2_#3}} %contravariant \newcommand\pdm[4]{\frac {\partial#1}{\partial#2_#3^#4}} %mixed \newcommand\pdd[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2^ #3}\,\partial{#2^#4}}} %e.g. \pdd fxij, Abl. zweiter Ordnung \newcommand\pddc[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2_ #3}\,\partial{#2_#4}}} \newcommand\PD[3]{\frac {{\partial\hskip0.15em}^2#1}{\partial #2\,\partial#3}} %e.g \PD fxy \newcommand\df[2]{\frac {d#1}{d#2}} \newcommand\dde[2]{\frac {\de#1}{\de#2}} %Set commands \newcommand{\set}[2]{\{\,#1\colon #2\,\}} \newcommand{\uu}{\cup} \newcommand{\ii}{\cap} \newcommand{\uuu}{\bigcup} \newcommand{\iii}{\bigcap} \newcommand{\uud}{ \stackrel{\lower 1ex \hbox {.}}{\uu}} \newcommand{\uuud}[1]{ \stackrel{\lower 1ex \hbox {.}}{\uuu_{#1}}} \newcommand\su{\subset} \newcommand\Su{\Subset} \newcommand\nsu{\nsubset} \newcommand\eS{\emptyset} \newcommand{\sminus}[1][28]{\raise 0.#1ex\hbox{$\scriptstyle\setminus$}} \newcommand{\cpl}{\complement} \newcommand\inn[1]{{\stackrel{\msp[9]\circ}{#1}}} \newcommand{\nim}{{\hskip2.2ex\not\hskip-1.5ex\im}} %\DeclareMathOperator*{\Au}{\A} %\DeclareMathOperator*{\Eu}{\E} \newcommand\ti{\times } %Geometry \newcommand{\ch}[3]{\varGamma_{#1#2}^#3} \newcommand{\cha}[3]{{\bar\varGamma}_{#1#2}^#3} \newcommand{\chc}[3]{{\tilde\varGamma}_{#1#2}^#3} \newcommand{\riem}[4]{R_{#1#2#3#4}} \newcommand{\riema}[4]{{\bar R}_{#1#2#3#4}} \newcommand{\cod}{h_{ij;k}-h_{ik;j}=\riema\al\bet\ga\de\n^\al x_i^\bet x_j^\ga x_k^\de} \newcommand{\gau}[1][\s]{\riem ijkl=#1 \{h_{ik}h_{jl}-h_{il}h_{jk}\} + \riema \al\bet\ga\de x_i^\al x_j^\bet x_k^\ga x_l^\de} \newcommand{\ric}{\h_{i;jk}=\h_{i;kj}+\riem lijk\msp \h^l} \newcommand{\rnn}{\bar R_{\al\bet}\nu^\al\nu^\bet} \newcommand{\ein}{G_{\al\bet}\nu^\al\nu^\bet} %Miscellaneous %\newcommand{\tbh}[1]{\tilde{\bar #1}} \newcommand{\dt}[1]{\dot{\tilde{#1}}} \newcommand{\tlam}{\tilde\lam} \newcommand{\tmu}{\tilde\mu} \newcommand\mbb[1]{{{\hfill\bf\boxed{#1}}}} %\providecommand{\bysame}{\makebox[3em]{\hrulefill}\thinspace} \newcommand{\la}{\label} \newcommand{\ci}{\cite} \newcommand{\bib}{\bibitem} \newcommand{\cfd}{\hat{\msc S'}(\mf a^*\times B)} \newcommand{\cfs}{\hat{\msc S}(\mf a^*\times B)} \newcommand{\cq}[1]{\glqq{#1}\grqq\,} \newcommand{\cqs}[1]{\glqq{\,#1\,}\grqq\,} \newcommand{\cqp}[1]{\glqq{\ignorespaces #1\ignorespaces}\grqq} \newcommand{\cqr}{\glqq{$\lra$}\grqq\,} \newcommand{\cql}{\glqq{$\lla$}\grqq\,} \newcommand\fr[2]{\frac{#1}{1-\frac14{#2}^2}} \newcommand\ffr[2]{\frac{#1}{(1-\frac14{#2}^2)^2}} \newcommand{\bt}{\begin{thm}} \newcommand{\bl}{\begin{lem}} \newcommand{\bc}{\begin{cor}} \newcommand{\bd}{\begin{definition}} \newcommand{\bpp}{\begin{prop}} \newcommand{\br}{\begin{rem}} \newcommand{\bn}{\begin{note}} \newcommand{\be}{\begin{ex}} \newcommand{\bes}{\begin{exs}} \newcommand{\bb}{\begin{example}} \newcommand{\bbs}{\begin{examples}} \newcommand{\ba}{\begin{axiom}} \newcommand{\bas}{\begin{assumption}} \newcommand{\et}{\end{thm}} \newcommand{\el}{\end{lem}} \newcommand{\ec}{\end{cor}} \newcommand{\ed}{\end{definition}} \newcommand{\epp}{\end{prop}} \newcommand{\er}{\end{rem}} \newcommand{\en}{\end{note}} \newcommand{\ee}{\end{ex}} \newcommand{\ees}{\end{exs}} \newcommand{\eb}{\end{example}} \newcommand{\ebs}{\end{examples}} \newcommand{\ea}{\end{axiom}} \newcommand{\eas}{\end{assumption}} \newcommand{\bp}{\begin{proof}} \newcommand{\ep}{\end{proof}} \newcommand{\eps}{\renewcommand{\qed}{}\end{proof}} \newcommand{\bal}{\begin{align}} %\newcommand{\eal}{\end{align}} \newcommand{\bi}[1][1.]{\begin{enumerate}[\upshape #1]} \newcommand{\bia}[1][(1)]{\begin{enumerate}[\upshape #1]} \newcommand{\bin}[1][1]{\begin{enumerate}[\upshape\bfseries #1]} \newcommand{\bir}[1][(i)]{\begin{enumerate}[\upshape #1]} \newcommand{\bic}[1][(i)]{\begin{enumerate}[\upshape\hspace{2\cma}#1]} \newcommand{\bis}[2][1.]{\begin{enumerate}[\upshape\hspace{#2\parindent}#1]} \newcommand{\ei}{\end{enumerate}} \newcommand{\mgp}[1]{\marginpar{\color{red}{#1}}} \newcommand{\ebx}[1][10]{\shadowbox{\hp .}\hskip#1pt} % comma is raised when components are quotients \newcommand\ndots{\raise 0.47ex \hbox {,}\hskip0.06em\cdots % \raise 0.47ex \hbox {,}\hskip0.06em} %Layout commands \newcommand{\clearemptydoublepage}{\newpage{\pagestyle{empty}\cleardoublepage}} \newcommand{\q}{\quad} \newcommand{\qq}{\qquad} \newcommand{\vs}[1][3]{\vskip#1pt} \newcommand{\hs}[1][12]{\hskip#1pt} \newcommand{\hp}{\hphantom} \newcommand{\vp}{\vphantom} \newcommand\cl{\centerline} \newcommand\nl{\newline} \newcommand\nd{\noindent} \newcommand{\nt}{\notag} % %my private skips; set to 0 to restore default \newcommand\cvs{\vspace\smallskipamount} \newcommand\cvm{\vspace\medskipamount} \newcommand\cvb{\vspace\bigskipamount} %%special roster macro \newcommand\citem{\cvs\advance\itemno by 1{(\romannumeral\the\itemno})\hskip3pt} \newcommand{\bitem}{\cvm\nd\advance\itemno by 1{\bf\the\itemno}\hspace{\cma}} \newcommand\cendroster{\cvm\itemno=0} %Labels \newcommand{\las}[1]{\label{S:#1}} \newcommand{\lass}[1]{\label{SS:#1}} \newcommand{\lae}[1]{\label{E:#1}} \newcommand{\lat}[1]{\label{T:#1}} \newcommand{\lal}[1]{\label{L:#1}} \newcommand{\lad}[1]{\label{D:#1}} \newcommand{\lac}[1]{\label{C:#1}} \newcommand{\lan}[1]{\label{N:#1}} \newcommand{\lap}[1]{\label{P:#1}} \newcommand{\lar}[1]{\label{R:#1}} \newcommand{\laa}[1]{\label{A:#1}} \newcommand{\laas}[1]{\label{Ass:#1}} \newcommand{\lapp}[1]{\label{Proof:#1}} %Referencing \newcommand{\rs}[1]{Section~\ref{S:#1}} \newcommand{\rss}[1]{Subsection~\ref{SS:#1}} \newcommand{\rt}[1]{Theorem~\ref{T:#1}} \newcommand{\rl}[1]{Lemma~\ref{L:#1}} \newcommand{\rd}[1]{Definition~\ref{D:#1}} \newcommand{\ras}[1]{Assumption~\ref{Ass:#1}} \newcommand{\rc}[1]{Corollary~\ref{C:#1}} \newcommand{\rn}[1]{Number~\ref{N:#1}} \newcommand{\rp}[1]{Proposition~\ref{P:#1}} \newcommand{\rr}[1]{Remark~\ref{R:#1}} \newcommand{\raa}[1]{Axiom~\ref{A:#1}} \newcommand{\re}[1]{\eqref{E:#1}} \newcommand{\frc}[1]{Corollary~\ref{C:#1} on page~\tup{\pageref{C:#1}}} \newcommand{\frt}[1]{Theorem~\ref{T:#1} on page~\tup{\pageref{T:#1}}} \newcommand{\frl}[1]{Lemma~\ref{L:#1} on page~\tup{\pageref{L:#1}}} \newcommand{\frr}[1]{Remark~\ref{R:#1} on page~\tup{\pageref{R:#1}}} \newcommand{\frd}[1]{Definition~\ref{D:#1} on page~\tup{\pageref{D:#1}}} \newcommand{\fre}[1]{\eqref{E:#1} on page~\tup{\pageref{E:#1}}} \newcommand{\frss}[1]{Subsection~\ref{SS:#1} on page~\tup{\pageref{SS:#1}}} \newcommand{\frs}[1]{Section~\ref{S:#1} on page~\tup{\pageref{S:#1}}} \newcommand{\rpp}[1]{\pageref{Proof:#1}} \newcommand{\fras}[1]{Assumption~\ref{Ass:#1} on page~\tup{\pageref{Ass:#1}}} %Index %\newcommand{\ind}[1]{#1\index{#1}} %New environments \newenvironment{textequation}[1][0.8] {\begin{equation} \begin{aligned} \begin{minipage}{#1\linewidth}} {\end{minipage} \end{aligned} \end{equation} \ignorespacesafterend} \newcommand{\btext}{\begin{textequation}} \newcommand{\etext}{\end{textequation}} \def\hinweis{\@startsection{subsection}{2}% \z@{0.7\linespacing\@plus 0.5\linespacing}{0.7\linespacing}% %% ^^^ vertical space above ^^^ ^^ below ^^^ {\normalfont\itshape\indent}} \)

THE QUANTIZATION OF GRAVITY: AN OVERVIEW

CLAUS GERHARDT

Abstract. We want to give an overview of our model of quantum gravity which we developed since 2012 based on the canonical quantization of a globally hyperbolic spacetime of dimension \(n+1\), \(n\ge 3\).

Date: May 31, 2025.

Contents

Contents
 1.  Introduction
 2.  The equations of quantum gravity
 3.  The missing antimatter
References
Links

1. Introduction

A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electromagnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory.

General relativity is a Lagrangian theory, i.e., the Einstein equations are derived as the Euler-Lagrange equation of the Einstein-Hilbert functional

\begin{equation} \int _N(\bar R-2\Lam ), \end{equation}

where \(N=N^{n+1}\), \(n\ge 3\), is a globally hyperbolic Lorentzian manifold, \(\bar R\) the scalar curvature and \(\Lam \) a cosmological constant. We also omitted the integration density in the integral. In order to apply a Hamiltonian description of general relativity, one usually defines a time function \(x^0\) and considers the foliation of \(N\) given by the slices

\begin{equation} M(t)=\{x^0=t\}. \end{equation}

We may, without loss of generality, assume that the spacetime metric splits

\begin{equation}\lae {1.3} d\bar s^2=-w^2(dx^0)^2+g_{ij}(x^0,x)dx^idx^j, \end{equation}

cf. [2, Theorem 3.2]. Then, the Einstein equations also split into a tangential part

\begin{equation} G_{ij}+\Lam g_{ij}=0 \end{equation}

and a normal part

\begin{equation} G_{\al \bet }\nu ^\al \nu ^\bet -\Lam =0, \end{equation}

where the naming refers to the given foliation. For the tangential Einstein equations one can define equivalent Hamilton equations due to the groundbreaking paper by Arnowitt, Deser and Misner [1]. The normal Einstein equations can be expressed by the so-called Hamilton condition

\begin{equation}\lae {1.6} \mc H=0, \end{equation}

where \(\mc H\) is the Hamiltonian used in defining the Hamilton equations. In the canonical quantization of gravity the Hamiltonian is transformed to a partial differential operator of hyperbolic type \(\hat {\mc H}\) and the possible quantum solutions of gravity are supposed to satisfy the so-called Wheeler-DeWitt equation

\begin{equation}\lae {1.7} \hat {\mc H}u=0 \end{equation}

in an appropriate setting, i.e., only the Hamilton condition \(\mathrm {(\ref {E:1.6})}\) has been quantized, or equivalently, the normal Einstein equation, while the tangential Einstein equations have been ignored.

In [2] we solved the equation \(\mathrm {(\ref {E:1.7})}\) in a fiber bundle \(E\) with base space \(\socc \),

\begin{equation} \socc =\{x^0=0\}\equiv M(0), \end{equation}

and fibers \(F(x)\), \(x\in \socc \),

\begin{equation} F(x)\su T^{0,2}_x(\socc ), \end{equation}

the elements of which are the positive definite symmetric tensors of order two, the Riemannian metrics in \(\socc \). The hyperbolic operator \(\hat {\mc H}\) is then expressed in the form

\begin{equation}\lae {1.10} \hat {\mc H}=-\D -(R-2\Lam )\f , \end{equation}

where \(\D \) is the Laplacian of the DeWitt metric given in the fibers, \(R\) the scalar curvature of the metrics \(g_{ij}(x)\in F(x)\), and \(\f \) is defined by

\begin{equation}\lae {1.11} \f ^2=\frac {\det g_{ij}}{\det \rho _{ij}}, \end{equation}

where \(\rho _{ij}\) is a fixed metric in \(\so \) such that instead of densities we are considering functions.

The Wheeler-DeWitt equation only represents the quantization of the normal Einstein equations and ignores the tangential Einstein equations. In order to quantize the full Einstein equations we incorporated the Hamilton condition into the right-hand side of the Hamilton equations to obtain a scalar evolution equation such that the Hamilton equations and this scalar evolution equation are equivalent to the full Einstein equations, cf. [6, Theorem 1.3.4, p. 12]. For the quantization of this evolution equation we defined the base space of the fiber bundle \(E\) to be the Cauchy hypersurface \((\socc ,\bar \s _{ij})\) of the quantized spacetime, where \(\bar \s _{ij}\) is the induced metric. We also choose the metric \(\rho _{ij}\) in \(\mathrm {(\ref {E:1.11})}\) to be equal to \(\bar \s _{ij}\). The result of this quantization was a hyperbolic equation in \(E\).

The fibers \(F(x)\) over \(x\in \so \) are Riemannian metrics \(g_{ij}(x)\) if external fields are excluded. In an appropriate local trivialization we obtained a coordinate system \((\xi ^a)\), \(0\le a \le m\),

\begin{equation}\nt m=\frac {(n-1)(n+2)}2, \end{equation}

\(n=\dim \so \), such that the metrics \(g_{ij}\) can be written

\begin{equation}\nt g_{ij}=t^\frac 4n \s _{ij}, \end{equation}

where

\begin{equation}\nt 0<t=\xi ^0<\un \end{equation}

and the metric \(\s _{ij}\) belongs to the hypersurface or subbundle

\begin{equation}\nt M=\{t=1\}\su E. \end{equation}

The solutions \(u\) then depend on the variables \((t,\s _{ij},x)\), where \(\s _{ij}\) does not depend on \(t\) and \(t\) not on \(x\). We refer to \(t\) as quantum time and \(x,\s _{ij}\) as spatial variables.

In the papers [35] we could express \(u\) as a product of eigenfunctions

\begin{equation} u=w\hat v v, \end{equation}

where \(w=w(t)\) is the temporal eigenfunction, \(\hat v=\hat v(\s _{ij}(x))\) can be identified with an eigenfunction of the Laplacian of the symmetric space

\begin{equation} X=SL(n,\R [])/SO(n) \end{equation}

such that

\begin{equation} \hat v(\bar \s _{ij}(x))=1\qq \A \, x\in \so , \end{equation}

where \(\bar \s _{ij}\) is the fixed induced metric of \(\so \). The eigenfunctions \(\hat v\) represent the elementary gravitons corresponding to the degrees of freedom in choosing the entries of Riemannian metrics with determinants equal to one. These are all the degrees of freedom available because of the coordinate system invariance: For any smooth Riemannian metric there exists an atlas such that the determinant of the metric is equal to one, cf. [6, Lemma 3.2.1, p. 74]. The function \(v\) is an eigenfunction of an essentially self-adjoint differential operator in \(\so \).

At first, the temporal eigenfunctions \(w\) were only the solutions of an ODE. Later, in [5, Section 5] we proved that they were the eigenfunctions of an essentially self-adjoint differential operator in \(\R []_+\), provided \(n\) is sufficiently large and \(\Lam <0\) and the Cauchy hypersurface \((\socc ,\bar \s _{ij})\) is either a space of constant curvature like \(\R [n]\) and \(\Hh [n]\) or a metric product of the form

\begin{equation}\lae {1.15} \so =\R [n_1]\times M_0, \end{equation}

where \(M_0\) is a smooth, compact and connected manifold of dimension \(n-n_1\),

\begin{equation} \dim M_0=n-n_1=n_0, \end{equation}

and where

\begin{equation} \bar \s =\de \otimes g \end{equation}

is a metric product; \(\de \) is the standard Euclidean metric and \(g\) a Riemannian metric in \(M_0\), cf. [5, Section 5].

But in [6, Chapter 4.2] we were able to prove this property for arbitrary \(n\ge 3\) and \(\Lam <0\) and, in case \(n=3\), even for \(\Lam >0\) by introducing an additional scalar fields map in the action functional, i.e., a map

\begin{equation} \F :N\ra \R [k], \end{equation}

where \(N=I\times \so \) is the original spacetime which is to be quantized. Let \((\bar g_{\al \bet })\) be the Lorentzian metric in \(N\), the scalar field Lagrangian is defined by

\begin{equation}\lae {2.4.1.2.4} L_S=-\frac 12 \bar g^{\al \bet }\ga _{ab}\F ^a_\al \F ^b_\bet \sqrt {\abs {\bar g}}, \end{equation}

i.e., without a zero order term, \((\ga _{ab})\) is the Euclidean metric in \(\R [k]\).

The temporal eigenfunctions \(w\) then have to satisfy the ODE

\begin{equation}\lae {1.20} \begin {aligned} &\frac n{16(n-1)} t^{-(m+k)}\frac \pa {\pa t}\big (t^{(m+k)} \pde wt\big )+t^{-2}(\abs \lam ^2+\rho ^2-\frac 12\abs {\theta _0}^2)w\\ &\qq + t^{2-\frac 4n}\{(n-1)\abs \xi ^2+\bar \mu _l\}w+(n-2) t^2\Lam w=0 \end {aligned} \end{equation}

in \(0<t<\un \), where

\begin{equation} \abs \lam ^2+\rho ^2 \end{equation}

is an eigenvalue of an elementary graviton,

\begin{equation} \abs {\theta _0}^2, \end{equation}

an eigenvalue of \(-\D _{\R [k]}\) and

\begin{equation} (n-1)\abs \xi ^2+\bar \mu _l \end{equation}

with \(\xi \in \R [{n_1}]\) an eigenvalue of the spatial self-adjoint operator acting in \(\mathrm {(\ref {E:1.15})}\).

Using the abbreviations

\begin{equation}\lae {1.24} \mu _0=\frac {16(n-1)}n(\abs \lam ^2+\abs \rho ^2-\frac 12 \abs {\theta _0}^2), \end{equation}

\begin{equation}\lae {1.25} m_1=\frac {16(n-1)}n\{(n-1)\abs \xi ^2+\bar \mu _l\} \end{equation}

and

\begin{equation}\lae {2.4.2.68.4} m_2=\frac {16(n-1)(n-2)}n \end{equation}

we can rewrite the equation \(\mathrm {(\ref {E:1.20})}\) in the form

\begin{equation}\lae {1.27} \begin {aligned} t^{-(m+k)}\frac \pa {\pa t}\big (t^{(m+k)} \pde wt\big )+t^{-2}\mu _0w + t^{2-\frac 4n} m_1 w+ t^2 m_2 \Lam w=0. \end {aligned} \end{equation}

This equation can be treated as an eigenvalue equation provided

\begin{equation}\lae {1.28} \bar \mu =\mu _0-\frac {(m+k-1)^2}4<0. \end{equation}

Let us recall that

\begin{equation} m=\frac {(n-1)(n+2)}2. \end{equation}

and

\begin{equation}\lae {1.30} \rho ^2=\frac {(n-1)^2n}{12}. \end{equation}

There are two ways how to treat \(\mathrm {(\ref {E:1.27})}\) as an eigenvalue equation: First, the cosmological constant \(\Lam \), or better \(-\Lam \) can be looked at as an implicit eigenvalue, or secondly, if we consider \(\Lam <0\) to be fixed, we could try to solve the eigenvalue problem

\begin{equation}\lae {1.31} -t^{-(m+k)}\frac \pa {\pa t}\big (t^{(m+k)} \pde wt\big )-t^{-2}\mu _0w - t^2 m_2 \Lam w=\lam t^{2-\frac 4n} w \end{equation}

in \((0,\un )\), where \(\lam >0\) is a yet unknown eigenvalue such that \(\lam \) would be equal to the spatial eigenvalue, i.e.,

\begin{equation} \lam =m_1=\frac {16(n-1)}n\{(n-1)\abs \xi ^2+\bar \mu _l\}. \end{equation}

In this case the corresponding eigenfunction \(w\) would be a solution of \(\mathrm {(\ref {E:1.27})}\), i.e., it would be a temporal eigenfunction of our model of quantum gravity. We solved the implicit as well as the explicit eigenvalue problem in [6, Chapter 4] by choosing \(k\) in \(\mathrm {(\ref {E:1.28})}\) sufficiently large such that \(\bar \mu <0\).

Since \(\mu _0\) is in general positive, unless we choose \(\abs {\theta _0}\) large which is not always possible or desirable, we considered the orthogonally equivalent function

\begin{equation}\lae {1.33} u=t^{\frac {m+k-1}2}w \end{equation}

which satisfies the equation

\begin{equation}\lae {1.34} -t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )-t^{-2}\bar \mu u +t^2 m_2^2 u=\lam t^{2-\frac 4n}u, \end{equation}

where

\begin{equation} \bar \mu =\mu _0-{\bigg (\frac {m+k-1}2\bigg )}^2 \end{equation}

which is negative if \(k\in \N \) is large enough.

In [6, Theorem 3.4.9, p. 86] we proved

Theorem 1.1. Let \(u\in \mc H_2\) satisfy the equation \(\mathrm {(\ref {E:1.34})}\) which we express in the form

\begin{equation}\lae {1.36} A_1u=-t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )+t^{-2}\mu ^2 u +t^2 m_2^2 u=\lam t^{2-\frac 4n} u, \end{equation}
where the constants \(\mu , m_2\) and \(\lam \) are strictly positive. Since \(\mu \) is especially important, let us emphasize that
\begin{equation} \mu ^2=-\bar \mu =\frac {(m+k-1)^2}4-\mu _0 \end{equation}
and \(\mu _0>0\). Then, there exists \(0<t_0<1\) and positive constants \(p,c_1,c_2\) such that \(u\) does not vanish in the interval \((0,t_0]\) and can be estimates by
\begin{equation}\lae {1.38} c_1 t^p\le \abs {u(t)}\le c_2 t^\mu \qq \A \,t\in (0,t_0], \end{equation}
where \(p\),
\begin{equation}\lae {1.39} \mu <p<\frac {m+k-1}2, \end{equation}
is arbitrary but fixed.

Here, we adapted the wording slightly to reflect the present assumptions, cf. [6, Theorem 4.2.4, p. 118].

If we combine gravity with the forces of the Standard Model then we cannot quantize the full Einstein equations but only the normal Einstein equation, i.e., the Hamilton condition. As a result we obtain the Wheeler-DeWitt equation which again can be solved by a product of spatial and temporal eigenfunctions or eigendistributions. In this case the temporal eigenfunction equation has the form, after using the same ansatz as before,

\begin{equation}\lae {1.40} -t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )-t^{-2}\bar \mu u +t^2 m_2^2 u=\lam t^{-\frac 23}u, \end{equation}

where

\begin{equation} \bar \mu =\mu _0-{\bigg (\frac {m+k-1}2\bigg )}^2. \end{equation}

Comparing this equation with equation \(\mathrm {(\ref {E:1.34})}\) there are two differences: First, the term \(\mu _0\) does not depend on \(\abs {\theta _0}\)

\begin{equation} \mu _0=\frac {16(n-1)}n(\abs \lam ^2+\abs \rho ^2) \end{equation}

since we had to choose \(\theta _0=0\), and secondly, the exponent of \(t\) on the right-side is \(-\frac 23\). The first difference implies that only by requiring \(k\) to be large we could enforce \(\bar \mu <0\) and the negative exponent that the estimate \(\mathrm {(\ref {E:1.38})}\) is slightly worse, but still good enough for our purpose. Indeed, we proved in [6, Theorem 5.5.5, p. 145]

Theorem 1.2. Let \(u\in \mc H_2\) satisfy the equation

\begin{equation}\lae {1.43} A_1u=-t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )+t^{-2}\mu ^2 u +t^2 m_2^2 u=\lam t^{-\frac 23} u, \end{equation}
where the constants \(\mu , m_2\) and \(\lam \) are strictly positive. Since \(\mu \) is especially important, let us emphasize that
\begin{equation}\lae {1.44} \mu ^2=-\bar \mu =\frac {(m+k-1)^2}4-\mu _0 \end{equation}
and \(\mu _0>0\). Then, for any small \(\e _0>0\), there exist \(0<t_0<1\) and positive constants \(p,c_1,c_2\) such that \(u\) does not vanish in the interval \((0,t_0]\) and can be estimated by
\begin{equation}\lae {1.45} c_1 t^p\le \abs {u(t)}\le c_2 t^{\mu -\e _0}\qq \A \,t\in (0,t_0], \end{equation}
where \(p\),
\begin{equation}\lae {1.46} \mu <p<\frac {m+k-1}2, \end{equation}
is arbitrary but fixed.

The eigenvalue equations \(\mathrm {(\ref {E:1.36})}\) and \(\mathrm {(\ref {E:1.43})}\) in the Hilbert space \(\mc H_2\) can both be solved by complete sequences of mutually orthogonal eigenfunctions \(u_i\) with corresponding positive eigenvalues \(\lam _i\) of multiplicity one satisfying

\begin{equation} 0<\lam _0<\lam _1<\lam _2<\cdots \end{equation}

and

\begin{equation} \lim _{i\ra \un }\lam _i =\un . \end{equation}

For a proof see [6, Theorem 3.4.5, p. 84].

As a corollary, which we like to formulate as a theorem, we deduce:

Theorem 1.3. Let \(w_i\in \hat {\mc H}_2\) be related to a function \(u_i\) by

\begin{equation} w_i=t^{-\frac {m+k-1}2}u_i \end{equation}
and assume that \(u_i\in \mc H_2\) satisfies an equation of the form
\begin{equation}\lae {1.50} A_1u=-t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )+t^{-2}\mu ^2 u +t^2 m_2^2 u=\lam t^{-\frac 23} u, \end{equation}
where the constants \(\mu , m_2\) and \(\lam \) are strictly positive and \(\mu \) is defined by
\begin{equation} \mu ^2=-\bar \mu =\frac {(m+k-1)^2}4-\mu _0 \end{equation}
and \(\mu _0>0\). Then, for any small \(\e _0>0\) there exists \(0<t_0<1\) and positive constants \(p,c_1,c_2\), such that \(w_i\) does not vanish in the interval \((0,t_0]\) and can be estimates by
\begin{equation}\lae {1.52} c_1 t^{p-\frac {m+k-1}2}\le \abs {w_i(t)}\le c_2 t^{\mu -\e _0-\frac {m+k-1}2}\qq \A \,t\in (0,t_0], \end{equation}
where \(p\),
\begin{equation}\lae {1.53} \mu <p<\frac {m+k-1}2, \end{equation}
is arbitrary but fixed. Hence, we conclude
\begin{equation} \lim _{t\ra 0}\abs {w_i(t)}=\un . \end{equation}

The eigenfunctions \(w_i\) in the previous theorem are the solutions of the original temporal eigenfunctions equation and they are the eigenfunctions of a self-adjoint operator in a Hilbert space. The \(u_i\) are the unitarily equivalent eigenfunctions of a unitarily equivalent self-adjoint operator. In [7, Section 3] we proved that the unitarily equivalent eigenfunctions

\begin{equation} \tilde u_i=t^\frac 12 u_i \end{equation}

can be extended past the singularity by an even reflection as sufficiently smooth functions provided the coefficient \(\mu ^2\) in \(\mathrm {(\ref {E:1.44})}\) is large enough. More precisely, we proved:

Theorem 1.4. Let \(2\le m_0\in \N \) be arbitrary and assume

\begin{equation} \mu +\frac 12>m_0, \end{equation}
then
\begin{equation}\lae {1.57} \tilde u_i\in C^{m_0}([0,t_0])\q \wed \q \tilde u_i^{(m_0)}(0)=0=\lim _{t\ra 0}\tilde u_i^{(m_0)}(t) \end{equation}
as well as
\begin{equation}\lae {1.58} \lim _{t\ra 0}\frac {\tilde u_i^{(k)}(t)}{t^{m_0-k}}=0\qq \A \, 1\le k\le m_0, \,k\in \N , \end{equation}
where \(\tilde u_i^{(k)}\) denotes the \(k\)-th derivative of \(\tilde u_i\). These properties are also valid for the extended functions.

Furthermore, we infered

Corollary 1.5. If the assumption of the preceding theorem is satisfied then the extended solutions \(\tilde u_i\) also satisfy the extended equations

\begin{equation}\lae {1.59} -\ddot { \tilde u}_i + t^{-2} {\tilde \mu }^2 \tilde u_i +t^2 m_2^2 \tilde u_i=\lam _i \abs t^q \tilde u_i \end{equation}
in \(\R []\), where we have to replace \(t^q\) by \(\abs t^q\) for obvious reasons. Let us emphasize that the lower order coefficients of the ODE exhibit a singularity in \(t=0\) but that both sides of the equation are continuous in the interval \((-\un ,\un )\) and vanish in \(t=0\).

Here, the exponent \(q\) is any real number satisfying

\begin{equation} -2<q<2. \end{equation}

2. The equations of quantum gravity

The tangential Einstein equations are equivalent to the Hamilton equations and the normal Einstein equation is equivalent to the Hamilton condition. By quantizing the Hamilton condition we obtain the Wheeler-DeWitt equation while ignoring the tangential Einstein equations. In order to quantize the full Einstein equations we consider the second Hamilton equations

\begin{equation} \dot \pi ^{ij}=-\frac {\de H}{\de g_{ij}}, \end{equation}

where

\begin{equation} H=H_0+H_1 \end{equation}

is the combined Hamilton function of the gravitational Hamiltonian \(H_0\) and the scalar field map Hamiltonian \(H_1\). Thus, we infer

\begin{equation}\lae {2.3} g_{ij}\dot \pi ^{ij}=-g_{ij}\frac {\de H}{\de g_{ij}}=-g_{ij}\frac {\de (H_0+H_1)}{\de g_{ij}}. \end{equation}

On the right-hand side of this evolution equation we then implement the Hamilton condition \(H=0\) in the form

\begin{equation} p H=0, \end{equation}

where \(0\not =p\in \R []\) is an arbitrary real number to be determined later. After the quantization of the modified evolution equation \(\mathrm {(\ref {E:2.3})}\) we obtain the hyperbolic equation

\begin{equation}\lae {4.2.47.4} \begin {aligned} &(\frac n2-2-p)\{-\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\qq +t^{-2}\D _Mu+\frac 12 t^{-2}\D _{\R [k]}u\}-(n-1)t^{2-\frac 4n}\tilde \D _\s u\\ &\qq -pt^{2-\frac 4n}R_\s u +2p\Lam u+t^{-2}\D _{\R [k]}u+pC_1u=0. \end {aligned} \end{equation}

The preceding equation is evaluated at \((x,t,\s _{ij},\theta ^a)\), where \(x\in \so \), \(t\in \R []_+\), \(\s _{ij}\in M\) is the induced metric of a Cauchy hypersurface of the quantized globally hyperbolic spacetime and \(\theta =\theta (x)\) is a coordinate in the fiber \(\R [k]\). Let us recall that after quantization the components \(\F ^a\) of the scalar field are equal to the coordinates \(\theta ^a\) in \(\R [k]\) such that

\begin{equation} \F ^a(x)=\theta ^a(x)\qq \A \, x \in \so \end{equation}

and

\begin{equation}\lae {4.2.49.4} C_1=\frac 12 t^{2-\frac 4n}\s ^{ij}\ga _{ab}\theta ^a_i\theta ^b_j. \end{equation}

Since we only introduced the scalar field in order to prove that the temporal "eigenfunctions" are indeed eigenfunctions of a self-adjoint operator with a pure point spectrum we can simplify the left-hand side of \(\mathrm {(\ref {E:4.2.47.4})}\) by choosing

\begin{equation} \theta ^a(x)=1\qq \A \, x \in \so , \;\A \, 1\le a\le k. \end{equation}

Hence, we have to solve the equation

\begin{equation}\lae {4.2.51.4} \begin {aligned} &(\frac n2-2-p)\{-\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\qq +t^{-2}\D _Mu+\frac 12 t^{-2}\D _{\R [k]}u\}-(n-1)t^{2-\frac 4n}\tilde \D _\s u\\ &\qq -pt^{2-\frac 4n}R_\s u +2pt^2\Lam u+t^{-2}\D _{\R [k]}u=0, \end {aligned} \end{equation}

where \(u\) depends on \((x,t,\s _{ij},\theta ^a)\). The parameter \(p\in \R []\), \(p\not =0\), is not yet specified.

As mentioned before the solution \(u\) should be a product of spatial and temporal eigenfunctions. In order to ensure that the temporal eigenfunctions are eigenfunctions of a self-adjoint operator we have to distinguish three cases:

Case 1: \(\Lam <0\) and \(n\ge 3\).

Then we choose

\begin{equation} p=\frac n2 -1 \end{equation}

and consider the equation

\begin{equation}\lae {2.11} \begin {aligned} &\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\q -t^{-2}\D _Mu+\frac 12 t^{-2}\D _{\R [k]}u-(n-1)t^{2-\frac 4n}\tilde \D _\s u\\ &\q -(\frac n2-1)t^{2-\frac 4n}R_\s u +(n-2)t^2\Lam u=0. \end {aligned} \end{equation}

Case 2: \(\Lam >0\) and \(n\ge 5\).

Then, we choose

\begin{equation} p=\frac n2 -2 -\frac 14>0 \end{equation}

and consider the equation

\begin{equation}\lae {2.13} \begin {aligned} &-\frac 14\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\q +\frac 14t^{-2}\D _Mu+\frac 98 t^{-2}\D _{\R [k]}u-(n-1)t^{2-\frac 4n}\tilde \D _\s u\\ &\q -(\frac n2-\frac 94)t^{2-\frac 4n}R_\s u +(n-\frac 92)t^2\Lam u=0. \end {aligned} \end{equation}

Case 3: \(\Lam >0\) and \(n=3\).

Then we choose

\begin{equation} p=-\frac 14 \end{equation}

yielding

\begin{equation}\lae {2.15} \begin {aligned} &\frac 14\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\q -\frac 14t^{-2}\D _Mu+\frac 78 t^{-2}\D _{\R [k]}u-(n-1)t^{2-\frac 4n}\tilde \D _\s u\\ &\q +\frac 14t^{2-\frac 4n}R_\s u -\frac 12t^2\Lam u=0. \end {aligned} \end{equation}

For a more detailed exposition we refer to [6, Chapter 4.2].

Finally, let us look at the Wheeler-DeWitt equation which we solved when we quantized gravity combined with the forces of the Standard Model, cf. [4]. For our purpose the reference [6, Chapter 5.4] is more suitable since, there, we also added a scalar field map such that the combined Hamilton function has the form

\begin{equation}\lae {2.9.4.81} \begin {aligned} \mc H&={\mc H}_G+ \mc H_S+{\mc H}_{YM}+{\mc H}_H+{\mc H}_D\\ &={\mc H}_G+\mc H_S+t^{-\frac 23}(\tilde {\mc H}_{YM}+\tilde {\mc H}_H+\tilde {\mc H}_D)\\ &\equiv {\mc H}_G+\mc H_S+t^{-\frac 23} \tilde {\mc H}_{SM}, \end {aligned} \end{equation}

where the subscripts \(YM\), \(H\), \(D\) refer to the Yang-Mills, Higgs and Dirac fields and \(SM\) to the fields of the Standard Model or to a corresponding subset of fields. The Hamilton constraint

\begin{equation} \mc H=0 \end{equation}

will be quantized by first quantizing the Hamiltonians \(\mc H_G+\mc H_S\) in the fibers for general metrics resulting in a hyperbolic operator

\begin{equation} \hat {\mc H}_G+\hat {\mc H}_S \end{equation}

But the expression

\begin{equation} \hat {\mc H}_G u+\hat {\mc H}_S u \end{equation}

will be evaluated \((x,t,\de _{ij}, \bar \theta ^a)\), where \(\de _{ij}\) is the standard Euclidean metric in \(\so =\R [n]\), \(n=3\), and

\begin{equation} \bar \theta ^a(x)=1\qq \A \, 1\le a\le k. \end{equation}

The Hamilton function \(\mc {\tilde H}_{SM}\), which represents spatial fields and is independent of \(t\), is quantized in \((\so , \de _{ij})\) by the usual methods of Quantum Field Theory (QFT). The Wheeler-DeWitt equation then has the form

\begin{equation}\lae {2.5.4.6.1.1} \begin {aligned} \hat {\mc H}u&=\al _N^{-1}\{\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot u)\\ &\qq -t^{-2}\D _Mu\}+\al _N^{-1}2t^2\Lam u+ t^{-\frac 23}\hat {\mc {\tilde H}}_{SM}u=0, \end {aligned} \end{equation}

where \(\al _N\) is a positive coupling constant and where we also assume that \(u\) does not depend on \(\theta ^a(x)\).

We then solve the Wheeler-DeWitt equation by using separation of variables. The operator \(\hat {\mc H}_{SM}\) is acting only in the base space \(\so \), such that the spatial eigendistributions, or approximate eigendistributions, \(\psi \) satisfying

\begin{equation}\lae {2.5.4.71.1} \hat {\tilde {\mc H}}_{SM}\psi =\mu \psi ,\qq \mu > 0 \end{equation}

can be derived by applying standard methods of QFT.

The remaining operator in \(\mathrm {(\ref {E:2.5.4.6.1.1})}\) is acting only in the fibers, i.e., we can use the eigenfunctions \(v=v(\s _{ij})\) of \(-\D _M\), which represent the elementary gravitons, satisfying

\begin{equation}\lae {2.5.4.73.1} -\D _Mv=(\abs \lam ^2+\abs \rho ^2)v\qq \A \,\s _{ij}\in M \end{equation}

and

\begin{equation}\lae {2.5.4.74.1} v(\de _{ij})=1\qq \A \, x\in \so , \end{equation}

cf. [6, Theorem 3.2.3, p. 76], and where

\begin{equation}\lae {2.5.4.75.1} \abs \rho ^2=1 \end{equation}

if \(n=3\), compare [6, equation (2.2.34), p. 49] and \(\mathrm {(\ref {E:1.30})}\).

Hence, we make the ansatz

\begin{equation} u=wv\psi , \end{equation}

where \(w=w(t)\) only depends on \(t>0\). Then, combining \(\mathrm {(\ref {E:2.5.4.6.1.1})}\), \(\mathrm {(\ref {E:2.5.4.71.1})}\), \(\mathrm {(\ref {E:2.5.4.73.1})}\), \(\mathrm {(\ref {E:2.5.4.74.1})}\) and \(\mathrm {(\ref {E:2.5.4.75.1})}\) we derive an ODE which must be solved by \(w\), namely,

\begin{equation}\lae {2.5.4.6.1.1.0} \begin {aligned} &\frac n{16(n-1)}t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot w)\\ &\qq +t^{-2}(\abs \lam ^2+1)w+2t^2\Lam w+\al _Nt^{-\frac 23}\mu w=0. \end {aligned} \end{equation}

Rewriting this ODE as

\begin{equation}\lae {2.28} \begin {aligned} -t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot w) -\mu _0t^{-2}w-m_2t^2\Lam w=m_1t^{-\frac 23} w, \end {aligned} \end{equation}

where

\begin{equation} \begin {aligned} \mu _0=\frac {16(n-1)}n(\abs \lam ^2+1), \end {aligned} \end{equation}

\begin{equation} m_1=\frac {16(n-1)}n\al _N\mu \end{equation}

and

\begin{equation} m_2=\frac {32(n-1)}n, \end{equation}

then the left-hand side of \(\mathrm {(\ref {E:2.28})}\) is identical to the left-hand side of equation \(\mathrm {(\ref {E:1.31})}\). However, on the right-hand side of these equations we have different powers of \(t\) which will lead to slightly different asymptotic estimates from above near the origin for the corresponding solutions. In order to unify the approach we shall consider the temporal equation

\begin{equation}\lae {2.28.1} \begin {aligned} -t^{-(m+k)}\frac \pa {\pa t}(t^{(m+k)}\dot w) -\mu _0t^{-2}w-m_2t^2\Lam w=m_1t^q w, \end {aligned} \end{equation}

where

\begin{equation} -2<q<2 \end{equation}

such that the resulting estimates can be applied in both cases.

Using the same transformation as in \(\mathrm {(\ref {E:1.33})}\) we define the function

\begin{equation} u=t^{\frac {m+k-1}2} w \end{equation}

which satisfies the equation

\begin{equation}\lae {2.35} -t^{-1}\frac \pa {\pa t}\big (t \pde ut\big )-t^{-2}\bar \mu u -t^2 m_2\Lam u=m_1 t^q u, \end{equation}

where

\begin{equation} \bar \mu =\mu _0-{\bigg (\frac {m+k-1}2\bigg )}^2 \end{equation}

is negative if \(k\in \N \) is large enough. If in addition the cosmological constant is also negative

\begin{equation} \Lam <0, \end{equation}

then \(\mathrm {(\ref {E:2.35})}\) can be looked at as an eigenvalue equation with positive eigenvalues \(m_1\) in an appropriate Hilbert space. This eigenvalue problem can be easily solved and in [7] we proved asymptotic estimates near the singularity which allowed us to deduce that unitarily equivalent eigenfunctions can be extended past the singularity as sufficiently smooth functions.

3. The missing antimatter

In our model of quantum gravity the physical states are described by solutions of a hyperbolic equation in a fiber bundle with base space \(\socc \) which is isometric to a Cauchy hypersurface of the quantized spacetime. The solutions of the hyperbolic equation can be expressed as a product of temporal and spatial eigenfunctions of self-adjoint operators acting in appropriate Hilbert spaces. The coefficients of the temporal eigenfunction equation as well as the corresponding eigenfunctions \(w_i\) have a singularity in \(t=0\) similar to the big bang singularity of the quantized spacetime.

However, by introducing a scalar field map

\begin{equation} \F : \socc \ra \R [k] \end{equation}

in the quantization process we proved in [7, Theorem 8, p. 21] that there exists a complete sequence of unitarily equivalent temporal eigenfunctions \(\tilde u_i\) which solve the eigenfunction equation

\begin{equation}\lae {5.2} -\ddot { \tilde u}_i + t^{-2} {\tilde \mu }^2 \tilde u _i+t^2 m_2^2 \tilde u_i=\lam _i \abs t^q \tilde u, \end{equation}

in the interval \((0,\un )\), where \(\tilde \mu , m_2\) and \(\lam _i\) are strictly positive and

\begin{equation} -2<q<2 \end{equation}

is a fixed exponent, such that the solutions \(\tilde u_i\) can be evenly or oddly mirrored to the negative axis as sufficiently smooth functions across the singularity provided the dimension \(k\) of the target space of \(\F \) is sufficiently large. The equation \(\mathrm {(\ref {E:5.2})}\) is then valid in \(\R []\) such that both sides smoothly vanish in \(t=0\). Moreover, we proved in [7, Lemma 6, p. 23] that the eigenfunctions \(\tilde u_i\) vanish exponentially fast near infinity which is also valid for the unitarily equivalent eigenfunctions \(w_i\), cf. [7, Corollary 3, p. 24].

The hyperbolic equation in the fiber bundle comprised second order differential operators acting in the fibers as well as in the base space. The temporal equation also defines a second order differential operator acting in the fibers because the Riemannian metrics, which are part of the variables after quantization, can be written in the form

\begin{equation} g_{ij}=t^\frac 4n \s _{ij}, \end{equation}

where \(0<t<\un \) and the \(\s _{ij}(x)\), \(x\in \socc \), are elements of a subbundle with fibers \(M(x)\) such that by fixing an arbitrary metric \(\bar \s _{ij}(x)\) which is supposed to be the induced metric of a Cauchy hypersurface of the quantized spacetime, we may assume, after choosing an appropriate atlas depending on \(\bar \s _{ij}\), that each fiber \(M(x)\) is isometric to the symmetric space

\begin{equation} X=SL(n,\R [])/SO(n), \end{equation}

cf. Section 1. The elementary gravitons are then eigenfunctions of the Laplacian in \(X\). The corresponding eigenvalues are already incorporated in the coefficient \(\tilde \mu ^2\) of the temporal differential operator such that we are allowed to consider, besides the temporal operator, only spatial operators acting in \(\so \).

Thus, we look at a quantum spacetime \(Q\) which can be written as a product

\begin{equation} Q=(0,\un )\times \socc \end{equation}

and at self-adjoint operators \(H_0\) and \(H_1\) acting in appropriate Hilbert spaces such that the remaining hyperbolic equation in \(Q\) can be expressed in the form

\begin{equation}\lae {5.7} H_0u-H_1u=0, \end{equation}

where \(u\) is a product of temporal and spatial eigenfunctions of \(H_0\) resp. \(H_1\)

\begin{equation} u(t,x)=\tilde u_i(t) \psi _j(x) \end{equation}

cf. [456] for more details.

Since the temporal eigenfunctions can be smoothly mirrored to the negative axis we may consider a second quantum spacetime

\begin{equation} Q_{-}=(-\un , 0)\times \so \end{equation}

in which the equation \(\mathrm {(\ref {E:5.7})}\) is also valid. Moreover, the equation \(\mathrm {(\ref {E:5.2})}\) is even valid in \(\R []\) across the singularity. Hence, we have to face the question how to interpret this behaviour. If we assume that \(Q_{-}\) has the same light cone as \(Q\), then the singularity in \(t=0\) lies in the future of \(Q_-\) and since the mirrored eigenfunctions \(w_i(t)\) become unbounded if \(t\) tends to zero, the singularity in \(t=0\) would be called a big crunch, i.e., \(Q_-\) would end in a big crunch but the corresponding classical spacetime would not start with a big bang in view of the results in [7, Lemma 6 & Corollary 3].

Hence, we have to assume that \(Q_-\) has the opposite time orientation, i.e., the singularity in \(t=0\) is also a big bang for \(Q_-\). In [4] and [6, Chapter 5] we proved that we may consider \(H_1\) to be a spatial self-adjoint operator defined by the fields of the Standard Model. If \(H_1\) is invariant with respect to parity and charge conjugation then, in view of the CPT theorem, we would conclude that at the big bang two universes had been created with different time orientation one filled with matter and the other with antimatter.

References

[1]    R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, Gravitation: an introduction to current research (Louis Witten, ed.), John Wiley, New York, 1962, pp. 227–265.

[2]    Claus Gerhardt, The quantization of gravity in globally hyperbolic spacetimes, Adv. Theor. Math. Phys. 17 (2013), no. 6, 1357–1391, arXiv:1205.1427, doi:10.4310/ATMP.2013.v17.n6.a5.

[3]    _________ , The quantization of gravity: Quantization of the Hamilton equations, Universe 7 (2021), no. 4, 91, doi:10.3390/universe7040091.

[4]    _________ , A unified quantization of gravity and other fundamental forces of nature, Universe 8 (2022), no. 8, 404, doi:10.3390/universe8080404.

[5]    _________ , The quantization of gravity: The quantization of the full Einstein equations, Symmetry 15 (2023), no. 8, 1599, doi:10.3390/sym15081599.

[6]    _________ , The Quantization of Gravity, 2nd ed., Fundamental Theories of Physics, vol. 194, Springer, Cham, November 2024, doi:10.1007/978-3-031-67922-3.

[7]    _________ , Extending the solutions and the equations of quantum gravity past the big bang singularity, Symmetry 17 (2025), no. 2, 262, doi:10.3390/sym17020262.

Home page, Preprints, Books, Lecture Notes, Former Students, Flashmode, TeX Scripts

Ruprecht-Karls-Universität, Institute for Mathematics, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

URL: https://www.math.uni-heidelberg.de/studinfo/gerhardt/