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Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee
consumption and life expectancy

Paradox conclusion:

• drinking coffee is healthy

• nevertheless, strong coffee drinkers tend to die earlier because
they tend to have unhealthy habits

⇒ Relation between statistical and causal dependences is tricky
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Statistical and causal statements...

...differ by slight rewording:

• “The life of coffee drinkers is 3 years shorter (on the
average).”

• “Coffee drinking shortens the life by 3 years (on the
average).”
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• in case 2) Reichenbach postulated X ⊥⊥ Y |Z .

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning.

3



Causal inference problem, general form Spirtes, Glymour, Scheines, Pearl

• Given variables X1, . . . ,Xn

• infer causal structure among them from n-tuples iid drawn
from P(X1, . . . ,Xn)

• causal structure = directed acyclic graph (DAG)

X1

X2

X3 X4
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Causal Markov condition (3 equivalent versions) Lauritzen et al

• local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

Xj

non-descendants

descendants

parents of Xj

• global Markov condition: If the sets S ,T of nodes are
d-separated by the set R, then

S ⊥⊥ T |R .

• factorization of joint density: p(x1, . . . , xn) =
∏

j p(xj |paj)
(subject to a technical condition)
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Relevance of Markov conditions

• local Markov condition: Most intuitive form, formalizes that
every information exchange with non-descendants involves the
parents

• global Markov condition: graphical criterion describing all
independences that follow from the ones postulated by the
local Markov condition

• factorization: every conditional p(xj |paj) describes a causal
mechanism
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Justification: Functional model of causality Pearl,...

• every node Xj is a function of its parents and an unobserved
noise term Uj

Xj

PAj (Parents of Xj)

= fj(PAj ,Uj)

• all noise terms Uj are statistically independent (causal
sufficiency)
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Functional model implies Markov condition

Theorem (Pearl 2000)

If P(X1, . . . ,Xn) is generated by a functional model according to a
DAG G, then it satisfies the 3 equivalent Markov conditions with
respect to G.
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Causal inference from observational data

Can we infer G from P(X1, . . . ,Xn)?

• MC only describes which sets of DAGs are consistent with P

• n! many DAGs are consistent with any distribution

X

Y Z

Z

X Y

Y

Z X

X

Z Y

Z

Y X

Y

X Z

• reasonable rules for preferring simple DAGs required
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Causal faithfulness Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

• Idea: generic choices of parameters yield faithful distributions

• Example: let X ⊥⊥ Y for the DAG

X

Y Z

• not faithful, direct and indirect influence compensate

• Application: PC and FCI infer causal structure from
conditional statistical independences
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Limitation of independence based approach:

• many DAGs impose the same set of independences

X Z Y

X Z Y

X Z Y

X ⊥⊥ Y |Z for all three cases (“Markov equivalent DAGs”)

• method useless if there are no conditional independences

• non-parametric conditional independence testing is hard

• ignores important information:
only uses yes/no decisions “conditionally dependent or not”
without accounting for the kind of dependences...
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We will see that causal inference should not only look at
statistical information...
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forget about statistics for a moment...

– how do we come to causal conclusions in every-day life?
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these 2 objects are similar...

– why are they so similar?
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Conclusion: common history

similarities require an explanation
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what kind of similarities require an explanation?

here we would not assume that anyone has copied the design...
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..the pattern is too simple

• similarities require an explanation only if the pattern is
sufficiently complex
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consider a binary sequence

Experiment:
2 persons are instructed to write down a string with 1000 digits

Result:
Both write 1100100100001111110110101010001...
(all 1000 digits coincide)
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the naive statistician concludes

“There must be an agreement between the subjects”

correlation coefficient 1 (between digits) is highly significant for
sample size 1000 !

• reject statistical independence
• infer the existence of a causal relation
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another mathematician recognizes...

11.0010010000111111011010101001... = π

• subjects may have come up with this number independently
because it follows from a simple law

• superficially strong similarities are not necessarily significant if
the pattern is too simple
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How do we measure simplicity versus complexity of
patterns / objects?
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Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solomonoff 1964)

of a binary string x

• K(x) = length of the shortest program with output x (on a
Turing machine)

• interpretation: number of bits required to describe the rule
that generates x

neglect string-independent additive constants; use
+
= instead

of =

• strings x , y with low K (x), K (y) cannot have much in
common

• K (x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity

• K (y |x): length of the shortest program that generates y from
the input x .

• number of bits required for describing y if x is given

• K (y |x∗) length of the shortest program that generates y from
x∗, i.e., the shortest compression x .

• subtle difference: x can be generated from x∗ but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

• I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗) +

= K (y)− K (y |x∗)

• Interpretation: number of bits saved when compressing x , y
jointly rather than compressing them independently
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Algorithmic mutual information: example

I(        :        ) = K(       )    
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Analogy to statistics:

• replace strings x , y (=objects) with random variables X ,Y

• replace Kolmogorov complexity with Shannon entropy

• replace algorithmic mutual information I (x : y) with statistical
mutual information I (X ;Y )
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Causal Principle

If two strings x and y are algorithmically dependent then either

x y x

z

y x y

1) 2) 3)

• every algorithmic dependence is due to a causal relation

• algorithmic analog to Reichenbach’s principle of common
cause

• distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Schölkopf IEEE TIT 2010
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Relation to Solomonoff’s universal prior

• string x occurs with probability ∼ 2−K(x)

• if generated independently, the pair (x , y) occurs with
probability ∼ 2−K(x)2−K(y)

• if generated jointly, it occurs with probability ∼ 2−K(x ,y)

• hence K (x , y)� K (x) + K (y) indicates generation in a joint
process

• I (x : y) quantifies the evidence for joint generation
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conditional algorithmic mutual information

• I (x : y |z) = K (x |z) + K (y |z)− K (x , y |z)

• Information that x and y have in common when z is already
given

• Formal analogy to statistical mutual information:

I (X : Y |Z ) = S(X |Z ) + S(Y |Z )− S(X ,Y |Z )

• Define conditional independence:

I (x : y |z) ≈ 0 :⇔ x ⊥⊥ y |z
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Algorithmic Markov condition

Postulate (DJ & Schölkopf IEEE TIT 2010)

Let x1, ..., xn be some observations (formalized as strings) and G
describe their causal relations.
Then, every xj is conditionally algorithmically independent of its
non-descendants, given its parents, i.e.,

xj ⊥⊥ ndj |pa∗j
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Equivalence of algorithmic Markov conditions

Theorem

For n strings x1, ..., xn the following conditions are equivalent

• Local Markov condition:

I (xj : ndj |pa∗j )
+
= 0

• Global Markov condition:
R d-separates S and T implies I (S : T |R∗) +

= 0

• Recursion formula for joint complexity

K (x1, ..., xn)
+
=

n∑
j=1

K (xj |pa∗j )

→ another analogy to statistical causal inference
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Algorithmic model of causality

Given n causality related strings x1, . . . , xn

• each xj is computed from its parents paj and an unobserved
string uj by a Turing machine T

• all uj are algorithmically independent

• each uj describes the causal mechanism (the program)
generating xj from its parents

• uj is the analog of the noise term in the statistical functional
model
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Interpretation

• Church-Turing-Deutsch Principle: Every physical process
can be simulated on a Turing machine

• Algorithmic model of causality: Every physical multipartite
process can be simulated by multiple Turing machines
influencing each other via the same DAG as the process
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Algorithmic model of causality implies Markov condition

Theorem

If x1, . . . , xn are generated by an algorithmic model of causality
according to the DAG G then they satisfy the 3 equivalent
algorithmic Markov conditions.
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Causal inference for single objects

3 carpets

conditional independence A ⊥⊥ B ‖C
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Applications

• Approximate K by existing compression schemes
(e.g. infer causal relations between texts by Lempel-Ziv
compression. Steudel, DJ, Schölkopf COLT 2010)

• Use algorithmic Markov condition as foundation for new
statistical inference rules
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Algorithmic Independence of Conditionals

Postulate (DJ & Schölkopf 2010, Lemeire & DJ 2012)

If P(X1, . . . ,Xn) is generated by the causal DAG G, then the
conditionals P(Xj |PAj) in the decomposition

P(X1, . . . ,Xn) =
n∏

j=1

P(Xj |PAj)

are algorithmically independent
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Relation to algorithmic Markov condition

• If one assumes that nature chooses the mechanisms
P(Xj |PAj) independently, then they should be algorithmically
independent due to the causal principle

• Applying the algorithmic Markov condition to the single
instances in the statistical sample yields something closely
related
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Two-variable case

If X → Y then

• P(X ) and P(Y |X ) are algorithmically independent while
P(Y ) and P(X |Y ) need not

• shortest description of P(X ,Y ) is given by separate
dscriptions of P(X ) and P(Y |X )

• defines an asymmetry of cause and effect although the
literature often claims that X → Y and Y → X cannot be
distinguished from observing P(X ,Y ).
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Toy example

Let X be binary and Y real-valued.

• Let Y be Gaussian and X = 1 for all y above some threshold
and X = 0 otherwise.

• Y → X is plausible: simple thresholding mechanism

• X → Y requires a strange mechanism:
look at P(Y |X = 0) and P(Y |X = 1) !
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not only P(Y |X ) itself is strange...

but also what happens if we change P(X ):

Hence, reject X → Y because it requires tuning of P(X ) relative
to P(Y |X ).
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Violation of independence of conditionals

Knowing P(Y |X ), there is a short description of P(X ), namely
’the unique distribution for which

∑
x P(Y |x)P(x) is Gaussian’.
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Non-linear additive noise based inference Hoyer, Janzing, Peters, Schölkopf, 2008

• Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y = f (X ) + E with E ⊥⊥ X

• there will, in the generic case, be no model

X = g(Y ) + Ẽ with Ẽ ⊥⊥ Y ,

even if f is invertible! (proof is non-trivial)
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Intuition

• additive noise model from X to Y imposes that the width of
noise is constant in x .

• for non-linear f , the width of noise wont’t be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an
additive noise model.

Implementation:

• Compute a function f as non-linear regression of Y on X , i.e.,
f (x) := E(Y |x).

• Compute the residual

E := Y − f (X )

• check whether E and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)
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Justifying additive noise based causal inference

Assume Y = f (X ) + E with E ⊥⊥ X

• Then P(Y ) and P(X |Y ) are related:

∂2

∂y2
log p(y) = − ∂2

∂y2
log p(x |y)− 1

f ′(x)

∂2

∂x∂y
log p(x |y) .

⇒ ∂2

∂y2 log p(y) can be computed from p(x |y) knowing f ′(x0)
for one specific x0

• Given P(X |Y ), P(Y ) has a short description.

• We reject Y → X provided that P(Y ) is complex

Janzing, Steudel, OSID (2010)
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Cause-effect pairs

• http://webdav.tuebingen.mpg.de/cause-effect/

• contains currently 86 data sets with X ,Y where we believe to
know whether X → Y or Y → X , e.g.

day in the year → temperature
age of snails → length

drinking water access → infant mortality rate
open http connections → bytes sent

outside room temperature → inside room temperature
age of humans → wage per hour

• goal: collect more pairs, diverse domains

• ground truth should be obvious to non-experts
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Additive noise based inference...

• about 75% correct decisions for 70 cause-effect pairs with
known ground truth

• fraction even better if we allow “no decision”

• we do not claim that noise is always additive in real life, but if
it is for one direction this is unlikely to be the wrong one

• generalization to n variables outperformed PC
(Peters, Mooij, Janzing, Schölkopf UAI 2011)
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Conclusions

Conventional causal inference is based on conditional statistical
dependences. This is insufficient because...

• not every causal conclusion refers to statistical data, we often
infer causal relations between single objects.

• even in statistical data one should not only look at statistical
information. Also the description length of the distribution
contains information about the causal structure.

The algorithmic Markov condition inspired us in developing new
statistical inference methods
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Thank you for your attention!
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