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The problem

Two ways of providing a computable function f : N→ N to a
machine:

• Via the graph of f (in�nite object),

• Via a program computing f (�nite object).

Main questions

• Does it make a di�erence?

• Can the two machines perform the same tasks?

• Does the code of a program give more information about what it
computes?
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The problem

The answer depends on:

• Whether the functions f are partial or total,

• The task to be performed by the machine (e.g. decide or
semi-decide something).

Decidability Semi-decidability

Partial functions

Total functions
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Partial functions

Decidability Semi-decidability

Partial functions ?

Total functions

Given (any enumeration of) the graph of f , one cannot decide whether
f(0) is de�ned.

Theorem (Turing, 1936)

Given a program for f , a machine cannot do better.
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Partial functions

Decidability Semi-decidability

Partial functions ?

Total functions

More generally, what can be decided about f?

Answers

Given the graph of f , only trivial properties: the decision about λx.⊥
applies to every f .

Theorem (Rice, 1953)

Given a program for f , a machine cannot do better.
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Partial functions

Decidability Semi-decidability

Partial functions program ≡ graph

Total functions

More generally, what can be decided about f?
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applies to every f .
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Partial functions

Decidability Semi-decidability

Partial functions program ≡ graph ?

Total functions

What can be semi-decided about f?

Answers

Given the graph of f , exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)

∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)

∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)

∨ . . .

Theorem (Shapiro, 1956)

Given a program for f , a machine cannot do better.
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Total functions

Decidability Semi-decidability

Partial functions program ≡ graph program ≡ graph

Total functions program ≡ graph ?

What can be decided/semi-decided about f?

Theorem (Kreisel-Lacombe-Sch÷n�eld/Ceitin, 1957/1962)

For properties of total computable functions,

decidable from a program ⇐⇒ decidable from the graph.

It does make a di�erence!

Theorem (Friedberg, 1958)

For properties of total computable functions,

semi-decidable from a program 6=⇒ semi-decidable from the graph.
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Total functions

Decidability Semi-decidability

Partial functions program ≡ graph program ≡ graph

Total functions program ≡ graph program > graph

What can be decided/semi-decided about f?

Theorem (Kreisel-Lacombe-Sch÷n�eld/Ceitin, 1957/1962)

For properties of total computable functions,

decidable from a program ⇐⇒ decidable from the graph.

It does make a di�erence!

Theorem (Friedberg, 1958)

For properties of total computable functions,

semi-decidable from a program 6=⇒ semi-decidable from the graph.
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Friedberg's property

Figure : Taken from Rogers

• Invented in 1958, easier to express using Kolmogorov complexity
(1960's).

• Say n ∈ N is compressible if K(n) < log(n).
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Friedberg's property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg's property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n)

When is it time to accept f?

• If f is given by its graph, we can never know.

• If f is given by a program p then evaluate f on inputs 0, . . . , 2|p|.
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Sum up

Two computation models:

• Markov-computability: given a program,

• Type-2-computability: given the graph.

Decidability Semi-decidability

Partial functions Markov ≡ Type-2
Rice

Markov ≡ Type-2
Rice-Shapiro

Total functions Markov ≡ Type-2
Kreisel-Lacombe-
Sch÷n�eld/Ceitin

Markov > Type-2
Friedberg
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Let f be a computable function. All the programs computing f share
some common information about f :

• The information needed to recover the graph of f ,

• Plus some extra information about f .

Question

What is the extra information?

Answer

They bound the Kolmogorov complexity of f !
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First main result

Let
K(f) = min{|p| : p computes f}.

Theorem

Let P be a property of total functions. The following are equivalent:

• f ∈ P is Markov-semi-decidable,

• f ∈ P is Type-2-semi-decidable given any upper bound on K(f).

In other words, the only useful information provided by a program p
for f is:

• the graph of f (by running p),

• an upper bound on K(f) (namely, |p|).
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More general results

The result is much more general and holds for:

• many classes of objects other than total functions:

2ω, R, any e�ective topological space

• many notions other than semi-decidability:

computable functions, n-c.e. properties, Σ0
2 properties

For instance,

Theorem (Computable functions)

Let X,Y be e�ective topological spaces and f : X → Y .

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.
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More general results

Example: n-c.e. properties of partial functions.

Theorem (Selivanov, 1984)

There is a property of partial functions that is

• 2-c.e. in the Markov-model,

• not 2-c.e. (and not even Π0
2) in the Type-2-model.

Again,

Theorem

Let P be a property. The following are equivalent:

• P is n-c.e. in the Markov-model,

• P is n-c.e. in the (Type-2,K)-model.
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Better understanding Markov-semi-decidable sets?

Type-2-computability

Well-understood, equivalent to e�ective topology:

• Type-2-semi-decidable set = e�ective open set

• Type-2-computable function = e�ectively continuous function

Markov-computability

No such correspondence.

• Can we get a better understanding of Markov-computability?

• E.g., what do the Markov-semi-decidable properties look like?
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Better understanding Markov-semi-decidable sets?

E�ective Borel complexity.

Theorem

Every Markov-semi-decidable property is Π0
2.

Proof.

The property is (Type-2,K)-semi-decidable, via a machine M . M
behaves the sames on (f, n) for all n ≥ K(f). As a result,

f ∈ P i� ∀k, ∃n ≥ k, the machine accepts (f, n).

This is tight.

Theorem

There is a Markov-semi-decidable property that is not Σ0
2:

∀n,Km(f�n) < n+ c.
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Better understanding Markov-semi-decidable sets?

What do the Markov-semi-decidable properties look like?

• For total computable functions: open problem.

• For subrecursive classes: answer now!
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Primitive recursive functions

What can be decided/semi-decided about a primitive recursive
function f , given a primitive recursive program for it?

Example of Type-2-decidable property

f(3) = 9 ∧ f(4) = 16 ∧ f(5) = 25

Example of Markov-decidable property

ACh = {f : ∀n,Kpr(f�n) < h(n)}

Theorem

That's it! All the Markov-semi-decidable properties are unions of
cylinders and sets ACh.

Idem for FPTIME, provably total functions, etc.
Fails for the class of all total computable functions.
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�The only extra information shared by programs computing an object
is bounding its Kolmogorov complexity.�

True to a large extent

See previous results.

Not always true

See next results.



The problem Historical results New results Limits

Relativization

Does the result hold relative to any oracle?

• On partial functions, NO.

• On total functions, YES.
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Relativization

Properties of partial functions.

Reminder: Rice-Shapiro theorem

Markov-semi-decidable ⇐⇒ (Type-2,K)-semi-decidable

⇐⇒ Type-2-semi-decidable

However,

Proposition

Markov-semi-decidable∅
′
6=⇒ (Type-2,K)-semi-decidable∅

′

(Type-2,K)-semi-decidable∅
′′
6=⇒ Type-2-semi-decidable∅

′′
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Relativization

Properties of total functions.

Theorem

For each oracle A ⊆ N,

Markov-semi-decidableA ⇐⇒ (Type-2,K)-semi-decidableA

There are two cases, whether A computes ∅′ or not.

Theorem

There is no uniform argument.
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Computable functions

Reminder

Let X,Y be countably-based topological spaces and f : X → Y .

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.

Still holds if Y is not countably-based? For instance,

Y = {open subsets of NN}.

• When X = {partial functions}, NO.
• When X = {total functions}, open question.
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Future work

• What are the Markov-semi-decidable properties of total
functions?

• Precise limits of the equivalence Markov≡(Type-2,K)?
• If a property is ω-c.e. in the Markov model, is it ω-c.e. in the
(Type-2,K) model?

• The objects always lived in e�ective topological spaces. What
about other represented spaces? For instance, the computable
functionals from NN to NN?
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