On the information carried by programs about the objects they compute

Mathieu Hoyrup and Cristóbal Rojas

LORIA - Inria, Nancy (France)

Two ways of providing a computable function $f:\mathbb{N}\to\mathbb{N}$ to a machine:

- Via the graph of f (*infinite* object),
- Via a program computing f (finite object).

Two ways of providing a computable function $f:\mathbb{N}\to\mathbb{N}$ to a machine:

- Via the graph of *f* (*infinite* object),
- Via a program computing f (finite object).

Main questions

- Does it make a difference?
- Can the two machines perform the same tasks?
- Does the code of a program give more information about what it computes?

The answer depends on:

- Whether the functions f are **partial** or **total**,
- The task to be performed by the machine (e.g. **decide** or **semi-decide** something).

	Decidability	Semi-decidability
Partial functions		
Total functions		

Historical results

New results

Limits

The problem

Historical results

New results

Limits

	Decidability	Semi-decidability
Partial functions	?	
Total functions		

	Decidability	Semi-decidability
Partial functions	?	
Total functions		

Given (any enumeration of) the graph of f, one cannot decide whether f(0) is defined.

	Decidability	Semi-decidability
Partial functions	?	
Total functions		

Given (any enumeration of) the graph of f, one cannot decide whether f(0) is defined.

Theorem (Turing, 1936)

Given a program for f, a machine cannot do better.

	Decidability	Semi-decidability
Partial functions	?	
Total functions		

More generally, what can be **decided** about f?

	Decidability	Semi-decidability
Partial functions	?	
Total functions		

More generally, what can be **decided** about f?

Answers

Given the graph of f, only trivial properties: the decision about $\lambda x \perp$ applies to every f.

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$	
Total functions		

More generally, what can be **decided** about f?

Answers

Given the graph of f, only trivial properties: the decision about $\lambda x \perp$ applies to every f.

Theorem (Rice, 1953)

Given a program for f, a machine cannot do better.

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$?
Total functions		

What can be **semi-decided** about f?

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$?
Total functions		

What can be **semi-decided** about f?

Answers

Given the graph of f, exactly the properties of the form:

$$(f(a_1) = u_1 \land \ldots \land f(a_i) = u_i)$$

$$\lor \quad (f(b_1) = v_1 \land \ldots \land f(b_j) = v_j)$$

$$\lor \quad (f(c_1) = w_1 \land \ldots \land f(c_k) = w_k)$$

$$\lor \quad \ldots$$

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$	$program \equiv graph$
Total functions		

What can be **semi-decided** about f?

Answers

Given the graph of f, exactly the properties of the form:

$$(f(a_1) = u_1 \land \ldots \land f(a_i) = u_i)$$

$$\lor \quad (f(b_1) = v_1 \land \ldots \land f(b_j) = v_j)$$

$$\lor \quad (f(c_1) = w_1 \land \ldots \land f(c_k) = w_k)$$

$$\lor \quad \ldots$$

Theorem (Shapiro, 1956)

Given a program for f, a machine cannot do better.

Total functions

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$	$program \equiv graph$
Total functions	?	

What can be **decided**/semi-decided about f?

Total functions

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$	$program \equiv graph$
Total functions	$program \equiv graph$?

What can be **decided**/semi-decided about f?

Theorem (Kreisel-Lacombe-Scheenfield/Ceitin, 1957/1962) For properties of total computable functions,

decidable from a program \iff decidable from the graph.

Total functions

	Decidability	Semi-decidability
Partial functions	$program \equiv graph$	$program \equiv graph$
Total functions	$program \equiv graph$	program > graph

What can be **decided**/semi-decided about f?

Theorem (Kreisel-Lacombe-Scheenfield/Ceitin, 1957/1962) For properties of total computable functions,

decidable from a program \iff decidable from the graph.

It does make a difference!

```
Theorem (Friedberg, 1958)
```

For properties of total computable functions,

 $semi-decidable \ from \ a \ program \ \Longrightarrow \ semi-decidable \ from \ the \ graph.$

Figure : Taken from Rogers

- Invented in 1958, easier to express using Kolmogorov complexity (1960's).
- Say $n \in \mathbb{N}$ is compressible if $K(n) < \log(n)$.

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)								

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0							

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0						

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0	0					

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0	0	0				

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0	0	0	0			

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0	0	0	0	0		

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

n	0	1	2	3	4	5	6	
f(n)	0	0	0	0	0	0	0	

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

Semi-deciding $f \in P$

When is it time to accept f?

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

Semi-deciding $f \in P$

When is it time to accept f?

• If f is given by its graph, we can never know.

Given a total function $f \neq \lambda x.0$, let

 $n_f = \min\{n : f(n) \neq 0\}.$

Friedberg's property is

 $P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$

Semi-deciding $f \in P$

When is it time to accept f?

- If f is given by its graph, we can never know.
- If f is given by a program p then evaluate f on inputs $0, \ldots, 2^{|p|}$.

Sum up

Two computation models:

- Markov-computability: given a program,
- Type-2-computability: given the graph.

	Decidability	Semi-decidability
Partial functions	$Markov \equiv Type-2$ $Rice$	$Markov \equiv Type-2$ $Rice-Shapiro$
Total functions	${f Markov}\equiv {f Type-2}\ Kreisel-Lacombe-\ Sch {m lpha}nfield/Ceitin$	${f Markov} > {f Type-2} \ {}_{Friedberg}$

Historical results

New results

Limits

The problem

Historical results

New results

Limits

Let f be a computable function. All the programs computing f share some common information about f:

- The information needed to recover the graph of f,
- Plus some extra information about f.

Question

What is the extra information?

Let f be a computable function. All the programs computing f share some common information about f:

- The information needed to recover the graph of f,
- Plus some extra information about f.

Question

What is the extra information?

Answer

They bound the Kolmogorov complexity of f!

First main result

 Let

$$K(f) = \min\{|p| : p \text{ computes } f\}.$$

Theorem

Let P be a property of total functions. The following are equivalent:

- $f \in P$ is Markov-semi-decidable,
- $f \in P$ is Type-2-semi-decidable given any upper bound on K(f).

First main result

Let

$$K(f) = \min\{|p| : p \text{ computes } f\}.$$

Theorem

Let P be a property of total functions. The following are equivalent:

- $f \in P$ is Markov-semi-decidable,
- $f \in P$ is Type-2-semi-decidable given any upper bound on K(f).

In other words, the **only** useful information provided by a program p for f is:

- the graph of f (by running p),
- an upper bound on K(f) (namely, |p|).

The result is much more general and holds for:

• many classes of objects other than total functions:

 $2^{\omega},\,\mathbb{R},\,\mathrm{any}$ effective topological space

• many notions other than semi-decidability:

computable functions, *n*-c.e. properties, Σ_2^0 properties

The result is much more general and holds for:

• many classes of objects other than total functions:

 $2^{\omega},\,\mathbb{R},\,\mathrm{any}$ effective topological space

• many notions other than semi-decidability:

computable functions, *n*-c.e. properties, Σ_2^0 properties

For instance,

Theorem (Computable functions)

Let X, Y be effective topological spaces and $f: X \to Y$.

f is Markov-computable $\iff f$ is (Type-2,K)-computable.

Example: n-c.e. properties of partial functions.

Theorem (Selivanov, 1984)

There is a property of partial functions that is

- 2-c.e. in the Markov-model,
- not 2-c.e. (and not even Π_2^0) in the Type-2-model.

Example: n-c.e. properties of partial functions.

Theorem (Selivanov, 1984)

There is a property of partial functions that is

- 2-c.e. in the Markov-model,
- not 2-c.e. (and not even Π_2^0) in the Type-2-model.

Again,

Theorem

Let P be a property. The following are equivalent:

- *P* is *n*-c.e. in the Markov-model,
- P is n-c.e. in the (Type-2,K)-model.

Type-2-computability

Well-understood, equivalent to effective topology:

- Type-2-semi-decidable set = effective open set
- Type-2-computable function = effectively continuous function

Markov-computability

No such correspondence.

- Can we get a better understanding of Markov-computability?
- E.g., what do the Markov-semi-decidable properties look like?

Effective Borel complexity.

Theorem

Every Markov-semi-decidable property is Π_2^0 .

Proof.

The property is (Type-2,K)-semi-decidable, via a machine M. M behaves the sames on (f,n) for all $n \ge K(f)$. As a result,

 $f \in P$ iff $\forall k, \exists n \ge k$, the machine accepts (f, n).

Effective Borel complexity.

Theorem

Every Markov-semi-decidable property is Π_2^0 .

Proof.

The property is (Type-2,K)-semi-decidable, via a machine M. M behaves the sames on (f, n) for all $n \ge K(f)$. As a result,

 $f \in P$ iff $\forall k, \exists n \ge k$, the machine accepts (f, n).

This is tight.

Theorem

There is a Markov-semi-decidable property that is not Σ_2^0 :

 $\forall n, Km(f{\upharpoonright}_n) < n+c.$

What do the Markov-semi-decidable properties look like?

- For total computable functions: open problem.
- For subrecursive classes: answer now!

Primitive recursive functions

What can be decided/semi-decided about a primitive recursive function f, given a primitive recursive program for it?

Example of Type-2-decidable property

 $f(3)=9 \quad \wedge \quad f(4)=16 \quad \wedge \quad f(5)=25$

Primitive recursive functions

What can be decided/semi-decided about a primitive recursive function f, given a primitive recursive program for it?

Example of Type-2-decidable property

$$f(3) = 9 \land f(4) = 16 \land f(5) = 25$$

Example of Markov-decidable property

 $AC_h = \{ f : \forall n, K_{pr}(f \upharpoonright_n) < h(n) \}$

Primitive recursive functions

What can be decided/semi-decided about a primitive recursive function f, given a primitive recursive program for it?

Example of Type-2-decidable property

$$f(3) = 9 \land f(4) = 16 \land f(5) = 25$$

Example of Markov-decidable property

$$AC_h = \{ f : \forall n, K_{pr}(f \upharpoonright_n) < h(n) \}$$

Theorem

That's it!

Primitive recursive functions

What can be decided/semi-decided about a primitive recursive function f, given a primitive recursive program for it?

Example of Type-2-decidable property

$$f(3) = 9 \land f(4) = 16 \land f(5) = 25$$

Example of Markov-decidable property

$$AC_h = \{f : \forall n, K_{pr}(f \restriction_n) < h(n)\}$$

Theorem

That's it! All the Markov-semi-decidable properties are unions of cylinders and sets AC_h .

Idem for FPTIME, provably total functions, etc. Fails for the class of all total computable functions.

Historical results

New results

Limits

The problem

Historical results

New results

Limits

"The only extra information shared by programs computing an object is bounding its Kolmogorov complexity."

True to a large extent

See previous results.

Not always true

See next results.

Relativization

Does the result hold relative to any oracle?

- On partial functions, NO.
- On total functions, YES.

New results

Relativization

Properties of **partial** functions.

Reminder: Rice-Shapiro theorem

However,

Proposition

Relativization

Properties of **total** functions.

Theorem

For each oracle $A \subseteq \mathbb{N}$,

```
Markov-semi-decidable^A \iff (Type-2,K)-semi-decidable^A
```

There are two cases, whether A computes \emptyset' or not.

Theorem

There is no uniform argument.

Computable functions

Reminder

Let X, Y be **countably-based** topological spaces and $f : X \to Y$.

f is Markov-computable $\iff f$ is (Type-2,K)-computable.

Still holds if Y is not countably-based? For instance,

 $Y = \{ \text{open subsets of } \mathbb{N}^{\mathbb{N}} \}.$

Computable functions

Reminder

- Let X, Y be **countably-based** topological spaces and $f : X \to Y$.
 - f is Markov-computable $\iff f$ is (Type-2,K)-computable.

Still holds if Y is not countably-based? For instance,

 $Y = \{ \text{open subsets of } \mathbb{N}^{\mathbb{N}} \}.$

- When $X = \{ \text{partial functions} \}, \text{NO}.$
- When $X = \{$ total functions $\}$, open question.

Future work

- What are the Markov-semi-decidable properties of total functions?
- Precise limits of the equivalence $Markov \equiv (Type-2, K)$?
- If a property is ω-c.e. in the Markov model, is it ω-c.e. in the (Type-2,K) model?
- The objects always lived in effective topological spaces. What about other represented spaces? For instance, the computable functionals from N^N to N^N?