
The Complexity of
Semiautomatic Structures

Sanjay Jain, Singapore

Bakhadyr Khoussainov, Auckland

Frank Stephan, Singapore

Dan Teng, Singapore

Siyuan Zou, Singapore

The Complexity ofSemiautomatic Structures – p. 1



Finite Automata

Recognising Multiples of Three
Three states: Remainders 0 (initial), 1, 2.
Update of state on digit: (s,d) 7→ (s+ d)mod3;
for example, state 2 and input 8 give new state 1.
Accept numbers where final state is 0.

Input: 2 5 6 1 0 2 4 2 0 4 8

State: 0 2 1 1 2 2 1 2 1 1 2 1

Final Decision: Reject

Multiples of p
States {0,1, . . . ,p− 1}; initial state 0.
Update: (s,d) 7→ ((s · 10) + d)modp.
Accept numbers where final state is 0.
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Automatic Structures - Example

Operations calculated or verified by finite automata
Automaton reads (from front or from end) inputs and has
missing digits be replaced by symbol different from the
alphabet. Here decimal adder with three states: n (no carry
and correct), c (carry and correct), i (incorrect). Automaton
works from the back to the front; start state and accepting
state are n; states i and c are rejecting.

Correct Addition Incorrect Addition

# 2 3 5 8 . 2 2 5 3 3 3 3 . 3 3 #

# 9 1 1 2 . # # # # # 2 2 . 2 2 2

1 1 4 7 0 . 2 2 5 # 1 5 5 . 5 5 2

n c n n c n n n n n i i n n n n n n n

Alignment at the positions of “.”; if no alignment rule is
given, alignment at the first member of the string; “#” are
placed to fill up free positions after alignment is done.
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Automatic Structures - Formal

In an automatic structure,

• the domain is coded as a regular set;

• each relation in the structure is recognised by a finite
automaton reading all inputs at same speed;

• each function in the structure is verified by a finite
automaton, that is, the automaton recognises the graph
consisting of all tuples of valid combinations of inputs
and outputs.

Examples: integers with addition and order; rationals with
order, minimum and maximum; positive terminating decimal
numbers with addition; finite subsets of the natural numbers
with union and intersection and set-inclusion.

The inventors: Bernard R. Hodgson (1976, 1983); Bakha-
dyr Khoussainov and Anil Nerode (1995); Achim Blumen-
sath and Erich Grädel (1999, 2000). The Complexity ofSemiautomatic Structures – p. 4



Groups and Order

An ordered group (G,+, <) satisfies the group axioms, that
< is transitive, that for each x,y ∈ G exactly one of x < y,
x = y and y < x is true, that for each x,y, z ∈ G the
condition x < y implies x+ z < y + z and z+ x < z+ y. A
group is left-ordered if x < y only implies z+ x < z+ y but
not the other condition.

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. Every automatic ordered group is Abelian, even if
only the group operation and not the ordering is automatic.
However, the Klein bottle group with lexicographic order is a
left-ordered automatic group.

Klein bottle group: Two generators a,b with a ◦ b = b−1 ◦ a
and aibj < ahbk ⇔ i < h ∨ (i = h ∧ j < k).
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Two-Dimensional Integer-Groups

Theorem [Jain, Khoussainov, Stephan, Teng and Zou

2014]. The ordered group (Z+
√
3 · Z,+, <) is automatic.

Representation. Sequences an . . . a1a0.a−1 . . . a−m of
coefficients in {−3,−2,−1,0,1,2,3} representing

a =
∑

k=−m,...,nu
k · ak aligned at the dot where u = 2+

√
3.

Important Equation is 4uk = uk+1 + uk−1.

Basic Automatic Algorithm. (Next Slide) Assume that
dk ∈ {−9, . . . ,9} for all k. This algorithm checks whether

d =
∑

k dk · uk is negative, zero or positive.

Comparison. To check whether a < b, compute digits
dk = bk − ak and determine the sign of d.

Addition. To check whether a+ b = c, compute all digits
dk = ak + bk − ck and determine the sign of d.
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Basic Automatic Algorithm.

Input anan−1 . . . a2a1a0.a−1a−2 . . . a−m.
Initialisation v = 0; w = 0; k = n+ 1.
While k > −m and v,w ∈ {−30,−29, . . . ,29,30}
Do Begin k = k− 1; (v,w) = (4v +w,−v + ak) End;
Represented Value is

v · uk+1 +w · uk +
∑

h<k

ah · uh;

If v > 30 Then Say “positive”; If v < −30 Then Say
“negative”; If −30 ≤ v ≤ +30 Then Take Sign of v · u+w.

Verification. If w is out of range then so is v.
If v is out of range then v determines the sign.

Algorithm can be carried out by finite automaton as v,w
take only finitely many possible values.
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Does Addition Determine Order?

Question [Jain, Khoussainov, Stephan, Teng and Zou
2014]. Is there an automatic copy (A,+) of the integers with
addition such that < is not automatic?

Comment. This is equivalent to asking whether there is an
automatic copy (A,+) of the integers such that
{x ∈ A : x ≥ 0} is not regular.

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. There is an automatic copy of {x · 2y · 3z : x,y, z ∈ Z}
in which the addition is automatic but not the order.

The reason is that for every integers a,k there are integers

b, c,d with a/6k = b/2k + c/3k + d and 0 ≤ b < 2k and

0 ≤ c < 3k where b is represented in binary and c is
represented in ternary. The addition on numbers
represented in that way is automatic but the order not.
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Semiautomatic Structures

Automatic structures are quite restrictive and many
structures cannot be represented.

Theorem [Tsankov 2011]. The additive group of the
rationals is not automatic.

Semiautomatic structures try to represent more structures
using automata. Idea: Instead of requiring that a function is
an automatic function in all inputs, one requires only that
the projected functions obtained by fixing all but one inputs
by constants are automatic; similarly for relations including
equality.

More formally, a structure like (Q,=, <; +) is semiautomatic
if the sets and relations and functions before the semicolon
are automatic and those after the semicolon are only
semiautomatic.
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Semiautomatic Groups and Rings

Theorem [Tsankov 2011]. A subring (A,+,=, <; ·) of the
rationals is semiautomatic iff there is a positive natural
number p such that every element in A is of the form x · py

for some x,y ∈ Z.

Proposition.
The ordered group (Q,=, <; +) is semiautomatic.
The groups (Q,=; ·) and (Z∞,=;+) are semiautomatic.

Theorem.
If a is a fixed square-root of an integer then the field
(Q+ a ·Q; +, ·,=, <) is semiautomatic.

Open Question.
Are (Q,=, <; +, ·) and (Q,=;+, ·) semiautomatic?
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Word Problem of Groups

Definition
Let a finite set of generators, say A = {a,b, c,d} of a
semigroup be given and let it include the inverses (if they
exist). Then {(v,w) : v,w ∈ A∗ and v,w represent the
same semigroup element} is called the word problem of the
semigroup.

Theorem
The word problem of a finitely generated subgroup of a
semiautomatic group is polynomial time decidable.

Theorem
There is a semiautomatic monoid where the word problem
is undeciable.
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Algorithm for Group

Let a,b, c,d be the generators. There are automatic
functions fa, fb, fc, fd mapping representatives x to
representatives of x ◦ a, x ◦ b, x ◦ c, x ◦ d, repsectively. Each
function has output at most k symbols longer than input, for
some constant k.

On input x,y, one checks x = y by starting with a
representative of the neutral element and then applying the
functions for the symbols in x and then the functions for the
inverses of symbols in y, the latter in inverted order.

Then one evaluates the regular language which recognises
all representatives of 0.

Each of fa, fb, fc, fd runs in linear time and the length of the
word in the memory increases at most by k · |xy|, hence the
overall time is quadratic. The final test of being the neutral
element is linear.
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Example for Semigroup

Let B ⊆ {a} · {a,b}∗ be some set and consider the
semigroup of all words {a,b, c}∗ with concatenation.
Furthermore, let π exchange a,b and leave c unchanged.
New equality ≡: let v0cv1c . . . cvk ≡ w0cw1c . . . cwk (where
vh,wh ∈ {a,b}∗) iff v0 = w0 and vk = wk and
vh = wh ∨ (vh = π(wh) ∧wh ∈ B) ∨ (vh = π(wh) ∧ vh ∈ B)
for all other h.

Now for u ∈ {a} · {a,b}∗, u ∈ B ⇔ cuc ≡ cπ(u)c.

Similarly equality ≡ in the semigroup can be mapped back
to membership of B with a polynomial time truth-table
reduction.

All representatives of an a semigroup member form a finite
set; the semigroup operation with a fixed element can be
implemented as concatenation with a fixed word. Thus the
monoid is semiautomatic.
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Vector Space Functions

Theorem
The structures (Qn,Zn; +, ·,=, <,F) are semiautomatic
where F is the set of all functions from Qn to Qn computed
by programs of finitely many lines with the following
instruction set:

• Perform a fixed linear mapping changing some of the
coordinates;

• Introduce a new coordinate and assign to it a value
which is a fixed linear combination of the other
coordinates;

• Jump forward to some fixed line number iff some fixed
linear mappings to Q produces (a) an integer; (b) a
positive number; (c) a fixed value; (d) a Boolean
combination of (a)–(c); (e) unconditionally;

• Terminate with output of the first n coordinates.The Complexity ofSemiautomatic Structures – p. 14



Vector Space

Representation
Convoluted tuples of binary integers of form
conv(a1,b1, . . . , an,bn, c) with c > 0 and
bm ∈ {0,1, . . . , c− 1} for all m ∈ {1, . . . ,n} representing
(a1 + b1/c1, . . . , an + bn/cn).

Operations
The operations might be replaced by more basic ones for
an implementation.

A value a′ + b′/c is 0 iff a′,b′ are 0; is an integer iff b′ = 0; is
non-negative iff a′ ≥ 0.

Addition of two coordinates: if bi + bj < c then a′ = ai + aj

and b′ = bi + bj else a′ = ai + aj + 1 and b′ = bi + bj − c.

Negating ai + bi/c: If bi = 0 then a′ = −ai and b′ = 0 else
a′ = 1− ai and b′ = c− bi.
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Basic Operations – Continued

Multiplication of coordinate ai + bi/c with fixed
p ∈ {1,2, . . .}: Let h be minmal number with p · bi ≥ c · h
(only choices h = 0,1, . . . , c− 1) and a′ = ai · p+ h and
b′ = bi · p− h · c.

Multiplication of some coordinates with fixed 1/p: Replace c

by c · p, for non-changed coordinates replace bi by bi · p; for
changed coordinates replace let h be remainder of ai by p

and replace ai by (ai − h)/p and bi by bi + h · ai.
Forming sum of fixed 1/p with ai + bi/c: If bi · p+ c < c · p
then a′ = ai and b′ = bi · p+ c else a′ = ai + 1 and
b′ = bi · p+ c− c · p; Replace c by c · p and bj by bj · p
everywhere.

Forming sum of fixed p and ai + bi/c by letting a′ = ai + p

and b′ = bi.
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Vector Operations and Multiplication

Theorem
For dimension n ≥ 10, there is no semiautomatic structure
as in the previous theorem with the following mapping
added to the list of permitted mappings the multiplication of
coordinates.

Together with tests for being an integer, this permits to
define a function whose range is a Diophantine set in the
first coordinate and a 0 in the second. One can
concatenate the resulting automatic function with
repeatedly subtracting 1 and then doing a test for 0 in order
to check whether a value x is in the Diophantine set. This
reduces the Matiyasevich result and contradicts the
decidability of the just indicated algorithmic approach. So
the structure is not semiautomatic.
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Vector Operations and Inversion

Theorem
There is no semiautomatic structure as in the previous
theorem with the following mapping added to the list of
permitted mappings the mapping x 7→ 1/x.

One can decode chain-fractions like
1/(a0 + 1/(a1 + (a2 + r))) by repeatedly inverting and
separting out a′,b′/c in a′ + b′/c giving a0, a1, a2 as input for
a Diophantine calculations on integers. Now one can exploit
that the square of a positive integer a ∈ {1,2, . . .} is

1/(1/a− 1/(a+ 1))− a; thus a · b = ((a+ b)2 − a2 − b2)/2.
This permits to apply Matiyasevich’s Technique and to show
that the structure cannot be semiautomatic.

Theorem
The structure (Q; +, ·, /,=, <) is semiautomatic.
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Summary

This talk gave an overview of the results presented last year
at CSR 2014.

For groups and monoids, the complexity of the word
problem of finitely generated submonoids was determined;
it is in polynomial time for a group and can be arbitrarily
complex for monoids.

While the linear operations on n-dimensional vector spaces
are compatible with some enhanced operations and still
permit to form a semiautomatic structure, a coding of
Matiyasevich’s Theorem prevents this from being done
when adding to this structure either multiplication of
coordinates or forming the multiplicative inverse.
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