Differentiability of computable monotone functions in \mathbb{R}^n

Alex Galicki

University of Auckland

June, 2015

Alex Galicki (University of Auckland)

Known results on the unit interval

Theorem (BMN '15, FKN '14)

 $z \in [0, 1]$ is computably random

 \iff every computable Lipschitz $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable at z

 \iff every computable monotone $f:[0,1] \rightarrow \mathbb{R}$ is differentiable at z.

Main idea was to use the following correspondences:

computable martingales \leftrightarrow computable measures

$$\mu(\sigma) = 2^{-|\sigma|} M(\sigma)$$

2 computable measures ↔ computable monotone functions on the unit interval

$$f(\mathbf{x}) = \mu([\mathbf{0}; \mathbf{x}])$$

Lipschitz functions on \mathbb{R}^n

Theorem (Rademacher, 1919)

Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is a Lipschitz function. There exists a null set, such that f is differentiable outside it.

The converse question

Let $N \subset \mathbb{R}^n$ be a null set. Is there a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ that is not differentiable inside *N*?

- positive for m = n = 1;
- for n ≥ 2 there is a null set N such that every Lipschitz f : ℝⁿ → ℝ is differentiable at some point in N (Preiss 1980);
- A comprehensive answer has been given/announced very recently, not all relevant results have been published yet (Alberti, Csörnyei, Preiss, Speight, Jones, etc);
- ▶ In general, the converse holds if and only if $m \ge n$.

Monotone functions on \mathbb{R}^n

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a function. We say *f* is *monotone* if

 $\langle f(x) - f(y), x - y \rangle \ge 0$ for all $x, y \in \mathbb{R}^n$.

Theorem (Mignot, 1976)

If $f : \mathbb{R}^n \to \mathbb{R}^n$ is monotone, then it is almost everywhere differentiable.

The converse question has not been studied.

Main result

What we have:

Theorem (Galicki & Turetsky, 2014)

 $z \in [0, 1]^n$ is computably random \implies every computable Lipschitz $f : [0, 1]^n \to \mathbb{R}$ is differentiable at z.

What we will show:

Theorem (GT 2014, G 2015)

 $z \in \mathbb{R}^n$ is computably random \iff every computable monotone $f : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable at z.

Minty Parameterization

Minty showed that the so called Cayley transformation

$$\Phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$$
 defined by $\Phi(x, y) = \frac{1}{\sqrt{2}}(y + x, y - x)$

transforms the graph of a monotone function into a graph of a 1-Lipschitz function.

Proposition (A)

Let $u : \mathbb{R}^n \to \mathbb{R}^n$ be monotone. Then (u + I) and $(u + I)^{-1}$ are monotone and $(u + I)^{-1}$ is 1-Lipschitz. Let $z \in \mathbb{R}^n$ and define $f = (u + I)^{-1}$ and $\hat{z} = u(z) + z$. The following two are equivalent:

f is differentiable at \hat{z} and $f'(\hat{z})$ is invertible.

The "easy" direction (\Longrightarrow)

Proposition (A) repeated

Let $z \in \mathbb{R}^n$ and define $f = (u + I)^{-1}$ and $\hat{z} = u(z) + z$. The following two are equivalent:

- u is differentiable at z, and
- 2 *f* is differentiable at \hat{z} and $f'(\hat{z})$ is invertible.

Let $u : \mathbb{R}^n \to \mathbb{R}^n$ be a monotone computable function and let $z \in [0, 1]^n$ be computably random.

- g = u + I is monotone and computable and
- $f = g^{-1}$ is 1-Lipschitz and computable.
- ► If we can show that $\hat{z} = g(z)$ is computably random, then *f* is differentiable at \hat{z} .
- By Proposition (A), if $f'(\hat{z})$ is invertible, then g is differentiable at z.

The hard direction (\Leftarrow)

Given $z \in \mathbb{R}^n$ not computably random, we need to find a computable monotone function not differentiable at *z*.

On the real line

- computable martingale M succeeding on Z
- we define computable measure on [0, 1] by $\mu(\sigma) = 2^{-|\sigma|} M(\sigma)$

• let
$$f(x) = cdf_{\mu}(x) = \mu([0; x])$$
.

To make f both Lipschitz and monotone, the idea was to make M bounded from below and from above while still not converging on Z.

Optimal transport

- we want to transfer resources from one location X to another Y
- we model this by considering probability measures: µ on X and v on Y
- b the cost of transporting x ∈ X to y ∈ Y is modelled by some cost function c : X × Y → ℝ,
- ▶ we are interested in the functions *T* that push μ onto ν , that is $\nu(A) = \mu(T^{-1}(A))$ for all *A*. In symbols, $\nu = T \# \mu$.

Monge's optimal transportation problem

Minimize $I[T] = \int_X c(x, T(x)) d\mu$ over the set of all measurable $T: X \to Y$ such that $\nu = T \# \mu$.

Reinterpreting the one-dimensional case

Fact (already known to Hoeffding and Fréchet)

Let μ, ν be two probability measures on \mathbb{R} , with respective cumulative distribution functions F and G. Assume μ is atomless. Then $T = G^{-1} \circ F$ is an optimal transport map (that transports μ onto ν) with respect to the quadratic cost $c(x, y) = |x - y|^2$.

 if we consider μ(σ) = 2^{-|σ|}M(σ), and λ, the optimal transport map T from μ onto λ is given by the cdf of μ.

The idea we'd like to exploit

- > z not computably random \rightarrow
- ▶ a martingale M diverging on $Z \rightarrow$
- ▶ a measure μ_M "oscillating" around $z \rightarrow z$
- a transfer map T from μ_M onto λ not differentiable at z.

Optimal transport in higher dimensions

Theorem (Knott-Smith '87, Brenier '87-'91, McCann '95)

Let μ, ν be (nice) probability measures on \mathbb{R}^n . There exists a unique gradient of a convex function $\nabla \phi : \mathbb{R}^n \to \mathbb{R}^n$ such that $\nabla \phi$ is the optimal transport map from μ onto ν with respect to the quadratic cost.

Theorem (Volume distortion, McCann '97 ??)

Let ϕ be a convex function on \mathbb{R}^n and suppose it is twice differentiable at $x \in \mathbb{R}^n$. Then

$$\lim_{r\to 0}\frac{\lambda\left(\partial\phi(B_r(x))\right)}{\lambda\left(B_r(x)\right)}=\det D_A^2\phi(x).$$

- in our case, the limit on the left is actually $D_{\lambda\mu}(z)$.
- Consequence: if D_λµ(z) does not exist, then ∇φ is not differentiable at z.

Outline of the proof

- define a computable martingale M diverging on Z
- show that $D_{\lambda}\mu_M(z)$ does not exists
- show that the optimal monotone transport map from μ_M onto λ is computable

Few points regarding the proof

Characterisation of computable randomness

 $z \in [0, 1]^n$ is computably random \iff every absolutely continuous computable probability measure on $[0, 1]^n$ is differentiable at z

Theorem (Effective Brenier's Theorem)

Let μ, ν be two absolutely continuous computable probability measures on \mathbb{R}^n . Then there is a computable convex function ϕ such that $\nabla \phi$ is the optimal monotone transportation map from μ onto ν .

A trouble: this only gives us an almost everywhere computable monotone function!

The last ingredient of the proof for the "hard" direction

- we need $\nabla \phi$ to be computable, not just a.e. computable
- ensuring Hölder continuity of $\nabla \phi$ would do
- Cafarelli's regularity theory is a series of results of the form: given "nice" properties of μ, ν ensure some continuity properties of φ

Theorem (Cafarelli)

Let ϕ be an Aleksandrov solution of

$$\det D^2 \phi = h.$$

If h is bounded from above and below by some positive constants, then $\phi \in C^{1,\alpha}$ for some universal exponent α .

In our case the equation is det $D^2\phi = D_{\lambda}\mu$. The idea is to make our martingale bounded from below and from above, not converging on *Z* in such a way as to ensure $D_{\lambda}\mu(z)$ does not exist.

Monge-Ampére equation

A general form is

$$\det D^2\phi(\mathbf{x}) = F(\mathbf{x}, \phi(\mathbf{x}), \nabla \phi(\mathbf{x}))$$

McCann showed that under certain conditions a special case of this equation holds a.e.

Theorem (G 2015)

 $z \in \mathbb{R}^n$ is computably random \iff the following equation holds for all computable absolutely continuous probability measures (on \mathbb{R}^n) μ

$$\det D^2 \phi_{\mu}(z) = D_{\lambda} \mu(z).$$

Where ϕ_{μ} is the optimal transport from μ onto λ .

The result for monotone functions provides also the "converse" direction for the effective Aleksandrov Theorem.

Theorem (G 2015)

 $z \in \mathbb{R}^n$ is computably random \iff every computable convex function $\phi : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at *z*.

Remaining questions

- the converse direction for the Effective Rademacher Theorem
- polynomial setting
- various natural questions concerning computability and theory of optimal transport:
 - computability, algorithmic randomness and Monge-Ampére equation
 - polynomial time version of Brenier's theorem