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Known results on the unit interval

Theorem (BMN ’15, FKN ’14)
z ∈ [0, 1] is computably random
⇐⇒ every computable Lipschitz f : [0, 1] → R is differentiable at z
⇐⇒ every computable monotone f : [0, 1] → R is differentiable at z.

Main idea was to use the following correspondences:

1 computable martingales ↔ computable measures

μ(σ) = 2−|σ|M(σ)

2 computable measures ↔ computable monotone functions on the
unit interval

f (x) = μ([0; x ])
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Lipschitz functions on Rn

Theorem (Rademacher, 1919)
Suppose f : Rn → Rm is a Lipschitz function. There exists a null set,
such that f is differentiable outside it.

The converse question
Let N ⊂ Rn be a null set. Is there a Lipschitz function f : Rn → Rm that
is not differentiable inside N?

I positive for m = n = 1;
I for n ≥ 2 there is a null set N such that every Lipschitz f : Rn → R

is differentiable at some point in N (Preiss 1980);
I A comprehensive answer has been given/announced very

recently, not all relevant results have been published yet (Alberti,
Csörnyei, Preiss, Speight, Jones, etc);

I In general, the converse holds if and only if m ≥ n.

Alex Galicki (University of Auckland) Monotone functions in Rn June, 2015 3 / 17



Monotone functions on Rn

Definition
Let f : Rn → Rn be a function. We say f is monotone if

〈f (x) − f (y), x − y〉 ≥ 0 for all x , y ∈ Rn.

Theorem (Mignot, 1976)

If f : Rn → Rn is monotone, then it is almost everywhere differentiable.

The converse question has not been studied.
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Main result

What we have:

Theorem (Galicki & Turetsky, 2014)
z ∈ [0, 1]n is computably random
=⇒ every computable Lipschitz f : [0, 1]n → R is differentiable at z.

What we will show:

Theorem (GT 2014, G 2015)
z ∈ Rn is computably random
⇐⇒ every computable monotone f : Rn → Rn is differentiable at z.
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Minty Parameterization

Minty showed that the so called Cayley transformation

Φ : Rn × Rn → Rn × Rn defined by Φ(x , y) =
1
√

2
(y + x , y − x)

transforms the graph of a monotone function into a graph of a
1-Lipschitz function.

Proposition (A)

Let u : Rn → Rn be monotone. Then (u + I) and (u + I)−1 are
monotone and (u + I)−1 is 1-Lipschitz.
Let z ∈ Rn and define f = (u + I)−1 and ẑ = u(z) + z. The following
two are equivalent:

1 u is differentiable at z, and
2 f is differentiable at ẑ and f ′(ẑ) is invertible.
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The “easy” direction ( =⇒ )

Proposition (A) repeated

Let z ∈ Rn and define f = (u + I)−1 and ẑ = u(z) + z. The following
two are equivalent:

1 u is differentiable at z, and
2 f is differentiable at ẑ and f ′(ẑ) is invertible.

Let u : Rn → Rn be a monotone computable function and let z ∈ [0, 1]n

be computably random.
I g = u + I is monotone and computable and
I f = g−1 is 1-Lipschitz and computable.
I If we can show that ẑ = g(z) is computably random, then f is

differentiable at ẑ.
I By Proposition (A), if f ′(ẑ) is invertible, then g is differentiable at z.
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The hard direction (⇐)

Given z ∈ Rn not computably random, we need to find a computable
monotone function not differentiable at z.

On the real line
I computable martingale M succeeding on Z
I we define computable measure on [0, 1] by μ(σ) = 2−|σ|M(σ)

I let f (x) = cdf μ(x) = μ([0; x ]).

To make f both Lipschitz and monotone, the idea was to make M
bounded from below and from above while still not converging on Z .
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Optimal transport

I we want to transfer resources from one location X to another Y
I we model this by considering probability measures: μ on X and ν

on Y
I the cost of transporting x ∈ X to y ∈ Y is modelled by some cost

function c : X × Y → R,
I we are interested in the functions T that push μ onto ν, that is

ν(A) = μ(T−1(A)) for all A. In symbols, ν = T#μ.

Monge’s optimal transportation problem

Minimize I[T ] =
∫

X c(x , T (x))dμ over the set of all measurable
T : X → Y such that ν = T#μ.
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Reinterpreting the one-dimensional case

Fact (already known to Hoeffding and Fréchet)
Let μ, ν be two probability measures on R, with respective cumulative
distribution functions F and G. Assume μ is atomless.
Then T = G−1 ◦ F is an optimal transport map (that transports μ onto
ν) with respect to the quadratic cost c(x , y) = |x − y |2.

I if we consider μ(σ) = 2−|σ|M(σ), and λ, the optimal transport map
T from μ onto λ is given by the cdf of μ.

The idea we’d like to exploit
I z not computably random →
I a martingale M diverging on Z →
I a measure μM “oscillating” around z →
I a transfer map T from μM onto λ not differentiable at z.
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Optimal transport in higher dimensions

Theorem (Knott-Smith ’87, Brenier ’87-’91, McCann ’95)
Let μ, ν be (nice) probability measures on Rn. There exists a unique
gradient of a convex function ∇φ : Rn → Rn such that ∇φ is the optimal
transport map from μ onto ν with respect to the quadratic cost.

Theorem (Volume distortion, McCann ’97 ??)
Let φ be a convex function on Rn and suppose it is twice differentiable
at x ∈ Rn. Then

lim
r→0

λ (∂φ(Br (x)))

λ (Br (x))
= det D2

Aφ(x).

I in our case, the limit on the left is actually Dλμ(z).
I Consequence: if Dλμ(z) does not exist, then ∇φ is not

differentiable at z.
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Outline of the proof

I define a computable martingale M diverging on Z
I show that DλμM(z) does not exists
I show that the optimal monotone transport map from μM onto λ is

computable
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Few points regarding the proof

Characterisation of computable randomness
z ∈ [0, 1]n is computably random ⇐⇒ every absolutely continuous
computable probability measure on [0, 1]n is differentiable at z

Theorem (Effective Brenier’s Theorem)
Let μ, ν be two absolutely continuous computable probability measures
on Rn. Then there is a computable convex function φ such that ∇φ is
the optimal monotone transportation map from μ onto ν.

A trouble: this only gives us an almost everywhere computable
monotone function!

Alex Galicki (University of Auckland) Monotone functions in Rn June, 2015 13 / 17



The last ingredient of the proof for the “hard” direction

I we need ∇φ to be computable, not just a.e. computable
I ensuring Hölder continuity of ∇φ would do
I Cafarelli’s regularity theory is a series of results of the form: given

“nice” properties of μ, ν ensure some continuity properties of φ

Theorem (Cafarelli)
Let φ be an Aleksandrov solution of

det D2φ = h.

If h is bounded from above and below by some positive constants, then
φ ∈ C1,α for some universal exponent α.

In our case the equation is det D2φ = Dλμ. The idea is to make our
martingale bounded from below and from above, not converging on Z
in such a way as to ensure Dλμ(z) does not exist.
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Monge-Ampére equation

A general form is

det D2φ(x) = F (x , φ(x),∇φ(x))

McCann showed that under certain conditions a special case of this
equation holds a.e.

Theorem (G 2015)
z ∈ Rn is computably random ⇐⇒ the following equation holds for all
computable absolutely continuous probability measures (on Rn) μ

det D2φμ(z) = Dλμ(z).

Where φμ is the optimal transport from μ onto λ.
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Effective Aleksandrov Theorem

The result for monotone functions provides also the “converse”
direction for the effective Aleksandrov Theorem.

Theorem (G 2015)
z ∈ Rn is computably random ⇐⇒ every computable convex function
φ : Rn → R is twice differentiable at z.
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Remaining questions

I the converse direction for the Effective Rademacher Theorem
I polynomial setting
I various natural questions concerning computability and theory of

optimal transport:
I computability, algorithmic randomness and Monge-Ampére

equation
I polynomial time version of Brenier’s theorem
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