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Known results on the unit interval

Theorem (BMN '15, FKN ’14)

z € [0, 1] is computably random
<= every computable Lipschitz f : [0, 1] — R is differentiable at z
<= every computable monotone f : [0,1] — R is differentiable at z.

Main idea was to use the following correspondences:

O computable martingales «» computable measures
p(o) = 27 IM(0)

O computable measures « computable monotone functions on the
unit interval

f(x) = u([0:x])
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Lipschitz functions on R"

Theorem (Rademacher, 1919)

Suppose f : R" — R™ is a Lipschitz function. There exists a null set,
such that f is differentiable outside it.

The converse question

Let N € R" be a null set. Is there a Lipschitz function f : R" — R™ that
is not differentiable inside N?

positive form =n = 1,

for n > 2 there is a null set N such that every Lipschitz f : R" — R
is differentiable at some pointin N (Preiss 1980);

A comprehensive answer has been given/announced very
recently, not all relevant results have been published yet (Alberti,
Csornyei, Preiss, Speight, Jones, etc);

In general, the converse holds if and only if m > n.
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Monotone functions on R"

Definition
Letf : R" — R" be a function. We say f is monotone if

(f(x) —f(y),x —y) >0forallx,y € R".

Theorem (Mignot, 1976)

Iff : R" — R" is monotone, then it is almost everywhere differentiable.

The converse guestion has not been studied.
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Main result

What we have:

Theorem (Galicki & Turetsky, 2014)

z € [0,1]" is computably random
= every computable Lipschitz f : [0,1]" — R is differentiable at z.

What we will show:

Theorem (GT 2014, G 2015)

z € R" is computably random
<= every computable monotone f : R" — R" is differentiable at z.
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Minty Parameterization

Minty showed that the so called Cayley transformation

¢ :R" x R" — R" x R" defined by ®(x,y) = %(y +X,¥y —X)

transforms the graph of a monotone function into a graph of a
1-Lipschitz function.

Proposition (A)

Letu : R" — R" be monotone. Then (u + 1) and (u + 1)~ are
monotone and (u + 1)~ is 1-Lipschitz.

Letz € R" and define f = (u + 1)t and Z = u(z) + z. The following
two are equivalent:

Q u is differentiable at z, and
Q f is differentiable at Z and f/(2) is invertible.
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The “easy” direction (=)

Proposition (A) repeated
Letz € R" and define f = (u + 1)t and Z = u(z) + z. The following
two are equivalent:
Q u is differentiable at z, and
Q f is differentiable at Z and f/(2) is invertible.
Letu : R" — R" be a monotone computable function and let z € [0, 1]"
be computably random.
» g = U+ | is monotone and computable and
» f = g~1is 1-Lipschitz and computable.

» If we can show that Z = g(z) is computably random, then f is
differentiable at Z.

» By Proposition (A), if f(2) is invertible, then g is differentiable at z.
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The hard direction (<)

Given z € R" not computably random, we need to find a computable
monotone function not differentiable at z.

On the real line
» computable martingale M succeeding on Z
» we define computable measure on [0, 1] by x(o) = 271°IM(0)
» let f(x) = cdf ,(x) = p([0;x]).

To make f both Lipschitz and monotone, the idea was to make M
bounded from below and from above while still not converging on Z.
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Optimal transport

» we want to transfer resources from one location X to another Y

» we model this by considering probability measures: ;. on X and v
onY

» the cost of transporting x € X toy € Y is modelled by some cost
functionc: X xY — R,

» we are interested in the functions T that push p onto v, that is
v(A) = u(T~1(A)) for all A. In symbols, v = T #p.

Monge’s optimal transportation problem

Minimize I[T] = [, c(x, T(x))d over the set of all measurable
T :X — Y suchthat v = T#pu.
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Reinterpreting the one-dimensional case

Fact (already known to Hoeffding and Fréchet)

Let i, v be two probability measures on R, with respective cumulative
distribution functions F and G. Assume p is atomless.
Then T = G~ 1o F is an optimal transport map (that transports 1 onto
v) with respect to the quadratic cost c(x,y) = |x — y|2.

if we consider p(o) = 2-1°IM (o), and )\, the optimal transport map
T from p onto X is given by the cdf of x.

The idea we’d like to exploit
z not computably random —
a martingale M divergingon Z —
a measure uy “oscillating” around z —
a transfer map T from py onto A not differentiable at z.
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Optimal transport in higher dimensions

Theorem (Knott-Smith '87, Brenier '87-'91, McCann '95)

Let i, v be (nice) probability measures on R". There exists a unique
gradient of a convex function V¢ : R" — R" such that V¢ is the optimal
transport map from p onto v with respect to the quadratic cost.

Theorem (Volume distortion, McCann ‘97 ??)

Let ¢ be a convex function on R" and suppose it is twice differentiable
at x € R". Then

i MO9(B (X))

B X)) = detD3¢(x).

» in our case, the limit on the left is actually D) u(z).

» Consequence: if Dyu(z) does not exist, then V¢ is not
differentiable at z.
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Outline of the proof

» define a computable martingale M diverging on Z
» show that D) (z) does not exists

» show that the optimal monotone transport map from py onto A is
computable
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Few points regarding the proof

Characterisation of computable randomness

z € [0,1]" is computably random <= every absolutely continuous
computable probability measure on [0, 1]" is differentiable at z

Theorem (Effective Brenier's Theorem)

Let 1, v be two absolutely continuous computable probability measures
on R". Then there is a computable convex function ¢ such that V¢ is
the optimal monotone transportation map from p onto v.

A trouble: this only gives us an almost everywhere computable
monotone function!
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The last ingredient of the proof for the “hard” direction

we need V¢ to be computable, not just a.e. computable
ensuring Holder continuity of V¢ would do

Cafarelli's regularity theory is a series of results of the form: given
“nice” properties of i, v ensure some continuity properties of ¢

Theorem (Cafarelli)
Let ¢ be an Aleksandrov solution of
detD?¢ = h.

If h is bounded from above and below by some positive constants, then
¢ € CLe for some universal exponent a.

In our case the equation is det D?¢ = D, . The idea is to make our
martingale bounded from below and from above, not converging on Z
in such a way as to ensure D,y (z) does not exist.
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Monge-Ampére equation

A general form is

detD?¢(x) = F(x, #(x), V(X))

McCann showed that under certain conditions a special case of this
equation holds a.e.

Theorem (G 2015)

z € R" is computably random <= the following equation holds for all
computable absolutely continuous probability measures (on R") p

detD?¢,(z) = Dyu(z).
Where ¢,, is the optimal transport from . onto A.
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Effective Aleksandrov Theorem

The result for monotone functions provides also the “converse”
direction for the effective Aleksandrov Theorem.

Theorem (G 2015)

z € R" is computably random <= every computable convex function
¢ : R" — R is twice differentiable at z.

Alex Galicki (University of Auckland) June, 2015 16/17



Remaining questions

» the converse direction for the Effective Rademacher Theorem
» polynomial setting

» various natural questions concerning computability and theory of
optimal transport:
» computability, algorithmic randomness and Monge-Ampére
equation
» polynomial time version of Brenier's theorem
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